最大流问题之Ford-Fulkerson

2024-06-21 23:38
文章标签 问题 最大 ford fulkerson

本文主要是介绍最大流问题之Ford-Fulkerson,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        最大流问题的Ford-Fulkerson解法。可是说这是一种方法,而不是算法,因为它包含具有不同运行时间的几种实现。该方法依赖于三种重要思想:残留网络,增广路径和割。本文将会详细介绍这些内容,下一篇文章我们提供一种该方法的Java实现。

在介绍着三种概念之前,我们先简单介绍下Ford-Fulkerson方法的基本思想。首先需要了解的是Ford-Fulkerson是一种迭代的方法。开始时,对所有的u,v属于V,f(u,v)=0(这里f(u,v)代表u到v的边当前流量),即初始状态时流的值为0。在每次迭代中,可以通过寻找一个“增广路径”来增加流值。增广路径可以看做是从源点s到汇点t之间的一条路径,沿该路径可以压入更多的流,从而增加流的值。反复进行这一过程,直到增广路径都被找出为止。

举个例子来说明下,如图所示,每条红线就代表了一条增广路径,当前s到t的流量为3。


当然这并不是该网络的最大流,根据寻找增广路径的算法我们其实还可以继续寻找增广路径,最终的最大流网络如下图所示,最大流为4。


接下来我们就介绍如何寻找增广路径。在介绍增广路径之前,我们首先需要介绍残留网络的概念。

一、残留网络

顾名思义,残留网络是指给定网络和一个流,其对应还可以容纳的流组成的网络。具体说来,就是假定一个网络G=(V,E),其源点s,汇点t。设f为G中的一个流,对应顶点u到顶点v的流。在不超过C(u,v)的条件下(C代表边容量),从u到v之间可以压入的额外网络流量,就是边(u,v)的残余容量(residual capacity),定义如下:

r(u,v)=c(u,v)-f(u,v)

举个例子,假设(u,v)当前流量为3/4,那么就是说c(u,v)=4,f(u,v)=3,那么r(u,v)=1。

我们知道,在网络流中还有这么一条规律。从u到v已经有了3个单位流量,那么从反方向上看,也就是从v到u就有了3个单位的残留网络,这时r(v,u)=3。可以这样理解,从u到v有3个单位流量,那么从v到u就有了将这3个单位流量的压回去的能力。

我们来具体看一个例子,如下图所示一个流网络


其对应的残留网络为:


二、增广路径

在了解了残留网络后,我们来介绍增广路径。已知一个流网络G和流f,增广路径p是其残留网络Gf中从s到t的一条简单路径。形象的理解为从s到t存在一条不违反边容量的路径,向这条路径压入流量,可以增加整个网络的流值。上面的残留网络中,存在这样一条增广路径:


其可以压入4个单位的流量,压入后,我们得到一个新的流网络,其流量比原来的流网络要多4。这时我们继续在新的流网络上用同样的方法寻找增广路径,直到找不到为止。这时我们就得到了一个最大的网络流。

三、流网络的割

上面仅仅是介绍了方法,可是怎么证明当无法再寻找到增广路径时,就证明当前网络是最大流网络呢?这就需要用到最大流最小割定理。

首先介绍下,割的概念。流网络G(V,E)的割(S,T)将V划分为S和T=V-S两部分,使得s属于S,t属于T。割(S,T)的容量是指从集合S到集合T的所有边(有方向)的容量之和(不算反方向的,必须是S-àT)。如果f是一个流,则穿过割(S,T)的净流量被定义为f(S,T)(包括反向的,SàT的为正值,T—>S的负值)。将上面举的例子继续拿来,随便画一个割,如下图所示:


割的容量就是c(u,w)+c(v,x)=26

当前流网络的穿过割的净流量为f(u,w)+f(v,x)-f(w,v)=12+11-4=19

显然,我们有对任意一个割,穿过该割的净流量上界就是该割的容量,即不可能超过割的容量。所以网络的最大流必然无法超过网络的最小割。

可是,这跟残留网络上的增广路径有什么关系呢?

首先,我们必须了解一个特性,根据上一篇文章中讲到的最大流问题的线性规划表示时,提到,流网络的流量守恒的原则,根据这个原则我们可以知道,对网络的任意割,其净流量的都是相等的。具体证明是不难的,可以通过下图形象的理解下,

 


和上面的割相比,集合S中少了u和v,从源点s到集合T的净流量都流向了u和v,而在上一个割图中,集合S到集合T的流量是等于u和v到集合T的净流量的。其中w也有流流向了u和v,而这部分流无法流向源点s,因为没有路径,所以最后这部分流量加上s到u和v的流量,在u和v之间无论如何互相传递流,最终都要流向集合T,所以这个流量值是等于s流向u和v的值的。将s比喻成一个水龙头,u和v流向别处的水流,都是来自s的,其自身不可能创造水流。所以任意割的净流量都是相等的。

万事俱备,现在来证明当残留网络Gf中不包含增广路径时,f是G的最大流。

假设Gf中不包含增广路径,即Gf不包含从s到v的路径,定义S={v:Gf中从s到v存在一条通路},也就是Gf中s能够有通路到达的点的集合,显然这个集合不包括t,因为s到t没有通路。这时,我们令T=V-S。那么(S,T)就是一个割。如下图所示:


那么,对于顶点u属于S,v属于T,有f(u,v)=c(u,v)。否则(u,v)就存在残余流量,因而s到u加上u到v就构成了一条s到v的通路,所以v就必须属于S,矛盾。因此这时就表明当前流f是等于当前的割的容量的,因此f就是最大流。

三.  java实现

先借助伪代码熟悉下流程

FORD-FULKERSON(G,t,s)

1 for each edge(u,v)属于E(G)

2     do f[u,v]=0

3          f[v,u]=0

4 while there exists a path p from s to t in the residual network Gf

5       do cf(p)=min{cf(u,v):(u,v)is in p}

6        for each edge (u,v) in p

7              do f[u,v]=f[u,v]+cf(p)

8                    f[v,u]=-f[u,v]

如果在4行中用广度优先搜索来实现对增广路径p的计算,即找到s到t的最短增广路径,能够改进FORD-FULERSON的界,这就是Ford-Fulkerson方法的Edmonds-Karp算法

证明该算法的运行时间为O(VE*E),易知,对流增加的全部次数上界为O(VE),每次迭代时间O(E)

class FordFulkerson{private double residualNetwork[][]=null;private double flowNetwork[][]=null;public final int N;int parent[];public FordFulkerson(int N){this.N=N;parent=new int[N];}/*** 实现FordFulkerson方法的一种算法——edmondsKarp算法* @param graph* @param s* @param t* @return*/public double edmondsKarpMaxFlow(double graph[][],int s,int t){int length=graph.length;double f[][]=new double[length][length];for(int i=0;i<length;i++){Arrays.fill(f[i], 0);}double r[][]=residualNetwork(graph,f);double result=augmentPath(r,s,t);double sum=0;while(result!=-1){int cur=t;while(cur!=s){f[parent[cur]][cur]+=result;f[cur][parent[cur]]=-f[parent[cur]][cur];r[parent[cur]][cur]-=result;r[cur][parent[cur]]+=result;cur=parent[cur];}sum+=result;result=augmentPath(r,s,t);}residualNetwork=r;flowNetwork=f;return sum;}/*** deepCopy* @param c* @param f* @return*/private double[][] residualNetwork(double c[][],double f[][]) {int length=c.length;double r[][]=new double[length][length];for(int i=0;i<length;i++){for(int j=0;j<length;j++){r[i][j]=c[i][j]-f[i][j];}}return r;}/*** 广度优先遍历,寻找增光路径,也是最短增广路径* @param graph* @param s* @param t* @return*/public double augmentPath(double graph[][],int s,int t){double maxflow=Integer.MAX_VALUE;Arrays.fill(parent, -1);Queue<Integer> queue=new LinkedList<Integer>();queue.add(s);parent[s]=s;while(!queue.isEmpty()){int p=queue.poll();if(p==t){while(p!=s){if(maxflow>graph[parent[p]][p])maxflow=graph[parent[p]][p];p=parent[p];}break;}for(int i=0;i<graph.length;i++){if(i!=p&&parent[i]==-1&&graph[p][i]>0){//flow[i]=Math.min(flow[p], graph[p][i]);parent[i]=p;queue.add(i);}}}if(parent[t]==-1)return -1;return  maxflow;}public double[][] getResidualNetwork() {return residualNetwork;}public double[][] getFlowNetwork() {return flowNetwork;}}

转载链接:http://blog.csdn.net/smartxxyx/article/details/9293805



这篇关于最大流问题之Ford-Fulkerson的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082671

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给