SQL题:未完成率较高的50%用户近三个月答卷情况

2024-06-21 11:04

本文主要是介绍SQL题:未完成率较高的50%用户近三个月答卷情况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SQL题:未完成率较高的50%用户近三个月答卷情况

这是一道牛客网上SQL进阶图库中的一道困难题目,个人花了近两个小时才通过所有用例。之所以想记录下来是因为这道题算是一个很考验基本功的题目,也不乏一些SQL中的技巧。下面我们逐步分析:

描述

现有用户信息表user_info(uid用户ID,nick_name昵称, achievement成就值, level等级, job职业方向, register_time注册时间):

iduidnick_nameachievementleveljobregister_time
11001牛客1号32007算法2020-01-01 10:00:00
21002牛客2号25006算法2020-01-01 10:00:00
31003牛客3号22005算法2020-01-01 10:00:00

试卷信息表examination_info(exam_id试卷ID, tag试卷类别, difficulty试卷难度, duration考试时长, release_time发布时间):

idexam_idtagdifficultydurationrelease_time
19001SQLhard602020-01-01 10:00:00
29002SQLhard802020-01-01 10:00:00
39003算法hard802020-01-01 10:00:00
49004PYTHONmedium702020-01-01 10:00:00

试卷作答记录表exam_record(uid用户ID, exam_id试卷ID, start_time开始作答时间, submit_time交卷时间, score得分):

iduidexam_idstart_timesubmit_timescore
1100190012020-01-01 09:01:012020-01-01 09:21:5990
15100290012020-01-01 18:01:012020-01-01 18:59:0290
13100190012020-01-02 10:01:012020-01-02 10:31:0189
2100290012020-01-20 10:01:01
3100290012020-02-01 12:11:01
5100190012020-03-01 12:01:01
6100290012020-03-01 12:01:012020-03-01 12:41:0190
4100390012020-03-01 19:01:01
7100290012020-05-02 19:01:012020-05-02 19:32:0090
14100190022020-01-01 12:11:01
8100190022020-01-02 19:01:012020-01-02 19:59:0169
9100190022020-02-02 12:01:012020-02-02 12:20:0199
10100290022020-02-02 12:01:01
11100290022020-02-02 12:01:012020-02-02 12:43:0181
12100290022020-03-02 12:11:01
17100190022020-05-05 18:01:01
16100290032020-05-06 12:01:01

请统计SQL试卷上未完成率较高的50%用户中,6级和7级用户在有试卷作答记录的近三个月中,每个月的答卷数目和完成数目。按用户ID、月份升序排序。

由示例数据结果输出如下:

uidstart_monthtotal_cntcomplete_cnt
100220200231
100220200321
100220200521

解释:各个用户对SQL试卷的未完成数、作答总数、未完成率如下:

uidincomplete_cnttotal_cntincomplete_rate
1001370.4286
1002480.5000
1003111.0000

1001、1002、1003分别排在1.0、0.5、0.0的位置,因此较高的50%用户(排位<=0.5)为1002、1003;

1003不是6级或7级;

有试卷作答记录的近三个月为202005、202003、202002;

这三个月里1002的作答题数分别为3、2、2,完成数目分别为1、1、1。

###解法:

这道题看起来很复杂,需要我们划分多个步骤,进行多次SQL嵌套才能完成。

**步骤一.**首先需要统计各个用户对SQL试卷的未完成数、作答总数、未完成率。其中需要确保试卷是SQL试卷。需要注意的是,这一步需要考虑多增加一列未完成率排名,排名应该使用开窗函数。SQL写法如下:

select exam_record.uid,
sum(case when submit_time is null then 1 else 0 end)  incomplete_cnt,
count(1) total_cnt, 
round(sum(case when submit_time is null then 1 else 0 end)/(count(1)), 4) incomplete_rate ,
user_info.level,
row_number() over(order by round(sum(case when submit_time is null then 1 else 0 end)/(count(1)), 4)) r
from  exam_record 
inner join user_info 
on user_info.uid = exam_record.uid 
inner join examination_info
on exam_record.exam_id = examination_info.exam_id
where examination_info.tag = 'SQL'
group by  exam_record.uid
order by  incomplete_rate

下一步则根据上一步所得出的数据筛选出哪些用户未完成率排在前50%且是6级或7级用户,加上将上一步SQL所得出的表命名为表a,可写如下sql进行筛选:

select  a.uid   from a
where  r >= (select floor(count(distinct uid)/2)  from exam_record) + 1 and  (a.level = 6 or a.level = 7)

此时我们就得出了应该被算入最终统计结果的所有用户uid。

**步骤二.**下一步需要考虑统计用户近三个月的总答题数和完成数。此时需要注意的是需要选出近三个月,因而至少需要一次针对不同用户uid和start_month的排序。代码如下:

select  exam_record.uid,
date_format(exam_record.start_time,"%Y%m")  start_month,
count(1) over(partition by exam_record.uid, date_format(exam_record.start_time,"%Y%m"))  total_cnt, 
sum(case when exam_record.submit_time is null then 0 else 1 end)  over(partition by exam_record.uid , date_format(exam_record.start_time,"%Y%m")) complete_cnt,
dense_rank() over(partition by exam_record.uid  order by date_format(exam_record.start_time,'%Y%m') desc)  x
from  exam_record

上段代码包含了复杂的开窗,其实主要是针对不同用户uid和start_month进行聚合,统计当月的答题总数total_cnt和当月的总完成数complete_cnt。需要注意的是,我们添加了一次排序使用的是dense_rank()进行排序,目的是同时达到筛选前三个月的数据和去重。将上一个SQL所得出的表命名为表t,SQL写法如下:

select  t.uid,t.start_month,t.total_cnt, t.complete_cnt
from t
where t.x <= 3
group by t.uid,t.start_month,t.total_cnt, t.complete_cnt
order by t.uid,t.start_month

以上代码很重要,同时达到去重和选取固定行数的目的,是重要的SQL技巧。

**步骤三.**下面我们将以上两个步骤的所有代码结合起来,得出最终的解:

select  t.uid,t.start_month,t.total_cnt, t.complete_cnt   /*除去下面注释部分所标注的内容都是步骤二所完成查询*/
from (
select  exam_record.uid,
date_format(exam_record.start_time,"%Y%m")  start_month,
count(1) over(partition by exam_record.uid , date_format(exam_record.start_time,"%Y%m"))  total_cnt, 
sum(case when exam_record.submit_time is null then 0 else 1 end)  over(partition by exam_record.uid , date_format(exam_record.start_time,"%Y%m")) complete_cnt,
dense_rank() over(partition by exam_record.uid  order by date_format(exam_record.start_time,'%Y%m') desc)  x
from  exam_record
where exam_record.uid in (     /*这里对uid的筛选其实主要是从步骤一中得出的结果中筛选*/
select  a.uid   from 
(
select exam_record.uid,
sum(case when submit_time is null then 1 else 0 end)  incomplete_cnt,
count(1) total_cnt, 
round(sum(case when submit_time is null then 1 else 0 end)/(count(1)), 4) incomplete_rate ,
user_info.level,
row_number() over(order by round(sum(case when submit_time is null then 1 else 0 end)/(count(1)), 4)) r
from  exam_record 
inner join user_info 
on user_info.uid = exam_record.uid 
inner join examination_info
on exam_record.exam_id = examination_info.exam_id
where examination_info.tag = 'SQL'
group by  exam_record.uid
order by  incomplete_rate
)  a
where  r >= (select floor(count(distinct uid)/2)  from exam_record) + 1 and  (a.level = 6 or a.level = 7)
)
) t
where t.x <= 3
group by t.uid,t.start_month,t.total_cnt, t.complete_cnt
order by t.uid,t.start_month

比较复杂,详细查看前两步,才能看懂最终结合的逻辑。

这篇关于SQL题:未完成率较高的50%用户近三个月答卷情况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081042

相关文章

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SQL server配置管理器找不到如何打开它

《SQLserver配置管理器找不到如何打开它》最近遇到了SQLserver配置管理器打不开的问题,尝试在开始菜单栏搜SQLServerManager无果,于是将自己找到的方法总结分享给大家,对SQ... 目录方法一:桌面图标进入方法二:运行窗口进入方法三:查找文件路径方法四:检查 SQL Server 安

MySQL 中的 LIMIT 语句及基本用法

《MySQL中的LIMIT语句及基本用法》LIMIT语句用于限制查询返回的行数,常用于分页查询或取部分数据,提高查询效率,:本文主要介绍MySQL中的LIMIT语句,需要的朋友可以参考下... 目录mysql 中的 LIMIT 语句1. LIMIT 语法2. LIMIT 基本用法(1) 获取前 N 行数据(

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2