属性归因和对齐在商品企划中的应用

2024-06-21 07:38

本文主要是介绍属性归因和对齐在商品企划中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

公众号 系统之神与我同在

业务背景:

在电商运营中,分析哪些变量会对顾客是否购买产生影响是十分重要的。然而我们对顾客进行商品描述和对工厂进行商品描述时所采用的语言是完全不同的,顾客看到的是关键词“仙女、超仙、气质”等等,而我们对工厂的要求就要具体到衣服的面料,工艺等等。也就是说,生产语言和营销语言之间存在描述的鸿沟!
在这里插入图片描述
PART1:属性归因
相关研究:

对于属性归因的相关研究有下:

·GAM广义加性模型——优点:具有很强的可解释性,缺点:对复杂任务的拟合能力较弱。
·LIME——优点:模型无关,简单模型解释复杂模型,缺点:拟合准确率不高 ,二次误差,时间复杂度高。
·Lstm+attention+adversarial——优点:考虑了混淆变量的影响。
·Lstm+attention+Res——优点:考虑了混淆变量的影响。
形式化因果关系:

问题描述:属性归因要解决的问题则是,如何找到商品中哪些属性影响了买家的决策。

在实际业务场景下,我们将变量分为如下三种:

·类文本变量cpv(类目-属性-属性值)简称T:解释变量。
·混淆变量(简称C),包括:品牌,人气,库存,淘宝卖家交易数据, 店铺人气,店铺·评分,店铺销量、商品好评率,价格等。
·目标变量ipv(item page view)简称Y:被解释变量。

我们使用网站用户的搜索数据进行训练,来预测ipv,目标是降低混淆变量的干扰,预测准确。

衡量准确性的指标为加权准确率(Weighted Mean Absolute Percentage Error):

在这里插入图片描述
为了达到该目标,目前推出了三个版本的模型:

V1:Transformer+Attention+Residualization
在这里插入图片描述
该模型分为两部分:使用cpv预测ipv和使用混淆变量预测ipv,然后将两部分进行加和。其中loss=loss(ipv)+loss(ipv’)

模型的acc和loss如下:
在这里插入图片描述
V1的缺陷:

加性模型会受到变量自身方差的影响,会出现两个描述基本相同的商品,最终ipv相差很大的情况。
在这里插入图片描述
基于V1的缺陷,对目标函数进行如下修正:

ipv由两部分组成:

1.商品被用户看到的概率(曝光率)
2.用户看到商品后,点击商品的概率(点击率)

基于数据观察,提出假设:ipv由曝光率*点击率决定,cpv 中一部分决定了曝光率,混淆变量一部分在曝光后影响点击,cpv 中一部分直接影响流量,混淆变量中一部分直接影响流量。

[公式]

其中,X为混淆变量,Gate表示门控机制,E代表cpv的encoding,f是FNN层。

V2:Transformer+Attention+Residualization+GateNN
在这里插入图片描述
模型V2的acc和loss如下:
在这里插入图片描述
V3: Transformer+Attention+Res+GateNN+mutil_learning

V3中加入了多目标学习,约束模型的学习方向。并且加入另外两个策略:

1.额外信息:query命中cpv的次数,query命中越多的cpv,相对越重要。
2.采用指数衰减的学习率,通过query count在训练初期纠正模型训练的方向。

在这里插入图片描述
V2和V3在不同变量的重要性得分对比如下:
在这里插入图片描述
在这里插入图片描述
V3的acc和loss如下:
在这里插入图片描述
V3模型的结果:
在这里插入图片描述
PART2:属性对齐
相关研究:

目前许多属性对齐是基于神经机器翻译的词对齐来实现的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
研究的热点:如何在Transformer上改进解释效果?

痛点:缺少平⾏语料和弱监督信号,如何从数据本身挖掘?

属性分类-冷启动数据准备:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
商品属性分类:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

商品属性对⻬—数据集构造:

数据来源于宝贝详情+标题NER,将数据分为两部分:生产属性集source和营销属性集target。
在这里插入图片描述
属性对齐模型有如下三个版本:

属性对齐模型 – V1版:Vanilla bi-LSTM Encoder + Decoder
在这里插入图片描述
问题:
在这里插入图片描述
对问题的分析:

·RNN的编码方式耦合了输入顺序
·本质:CPV不严格是序列关系
·Over/under translation problem
·需要追踪之前的注意力分布做模型约束

改进:

·编码器替换为Transformer
·平均池化作为全局语义向量
·考虑到解释性,折中使用单层
·引入Coverage机制作为多目标loss
·分类标签修正,增加差异性

属性对齐模型 – V2版:Transformer Encoder + Decoder
在这里插入图片描述
属性对齐模型 – V3版:V2 + Coverage constraint
在这里插入图片描述
矩阵分解+后处理:

1.矩阵分解:对营销属性x,取score Top2生产属性y,组成pair对(x, y)作为候选。以叶子类目为单位,聚合所有pair对。
2.排序规则:
在这里插入图片描述
3.对⻬结果导出:

CPV对⻬表1:⽣产 → 营销

CPV对⻬表2:营销 → ⽣产
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
后续改进:1.针对丰富度、差异性不⾜的类⽬优化,2.pipeline形式的误差累积。

PART3:场景应⽤
应用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
多场景赋能:
在这里插入图片描述

这篇关于属性归因和对齐在商品企划中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080601

相关文章

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

HTML5中下拉框<select>标签的属性和样式详解

《HTML5中下拉框<select>标签的属性和样式详解》在HTML5中,下拉框(select标签)作为表单的重要组成部分,为用户提供了一个从预定义选项中选择值的方式,本文将深入探讨select标签的... 在html5中,下拉框(<select>标签)作为表单的重要组成部分,为用户提供了一个从预定义选项中

MobaXterm远程登录工具功能与应用小结

《MobaXterm远程登录工具功能与应用小结》MobaXterm是一款功能强大的远程终端软件,主要支持SSH登录,拥有多种远程协议,实现跨平台访问,它包括多会话管理、本地命令行执行、图形化界面集成和... 目录1. 远程终端软件概述1.1 远程终端软件的定义与用途1.2 远程终端软件的关键特性2. 支持的

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像