属性归因和对齐在商品企划中的应用

2024-06-21 07:38

本文主要是介绍属性归因和对齐在商品企划中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

公众号 系统之神与我同在

业务背景:

在电商运营中,分析哪些变量会对顾客是否购买产生影响是十分重要的。然而我们对顾客进行商品描述和对工厂进行商品描述时所采用的语言是完全不同的,顾客看到的是关键词“仙女、超仙、气质”等等,而我们对工厂的要求就要具体到衣服的面料,工艺等等。也就是说,生产语言和营销语言之间存在描述的鸿沟!
在这里插入图片描述
PART1:属性归因
相关研究:

对于属性归因的相关研究有下:

·GAM广义加性模型——优点:具有很强的可解释性,缺点:对复杂任务的拟合能力较弱。
·LIME——优点:模型无关,简单模型解释复杂模型,缺点:拟合准确率不高 ,二次误差,时间复杂度高。
·Lstm+attention+adversarial——优点:考虑了混淆变量的影响。
·Lstm+attention+Res——优点:考虑了混淆变量的影响。
形式化因果关系:

问题描述:属性归因要解决的问题则是,如何找到商品中哪些属性影响了买家的决策。

在实际业务场景下,我们将变量分为如下三种:

·类文本变量cpv(类目-属性-属性值)简称T:解释变量。
·混淆变量(简称C),包括:品牌,人气,库存,淘宝卖家交易数据, 店铺人气,店铺·评分,店铺销量、商品好评率,价格等。
·目标变量ipv(item page view)简称Y:被解释变量。

我们使用网站用户的搜索数据进行训练,来预测ipv,目标是降低混淆变量的干扰,预测准确。

衡量准确性的指标为加权准确率(Weighted Mean Absolute Percentage Error):

在这里插入图片描述
为了达到该目标,目前推出了三个版本的模型:

V1:Transformer+Attention+Residualization
在这里插入图片描述
该模型分为两部分:使用cpv预测ipv和使用混淆变量预测ipv,然后将两部分进行加和。其中loss=loss(ipv)+loss(ipv’)

模型的acc和loss如下:
在这里插入图片描述
V1的缺陷:

加性模型会受到变量自身方差的影响,会出现两个描述基本相同的商品,最终ipv相差很大的情况。
在这里插入图片描述
基于V1的缺陷,对目标函数进行如下修正:

ipv由两部分组成:

1.商品被用户看到的概率(曝光率)
2.用户看到商品后,点击商品的概率(点击率)

基于数据观察,提出假设:ipv由曝光率*点击率决定,cpv 中一部分决定了曝光率,混淆变量一部分在曝光后影响点击,cpv 中一部分直接影响流量,混淆变量中一部分直接影响流量。

[公式]

其中,X为混淆变量,Gate表示门控机制,E代表cpv的encoding,f是FNN层。

V2:Transformer+Attention+Residualization+GateNN
在这里插入图片描述
模型V2的acc和loss如下:
在这里插入图片描述
V3: Transformer+Attention+Res+GateNN+mutil_learning

V3中加入了多目标学习,约束模型的学习方向。并且加入另外两个策略:

1.额外信息:query命中cpv的次数,query命中越多的cpv,相对越重要。
2.采用指数衰减的学习率,通过query count在训练初期纠正模型训练的方向。

在这里插入图片描述
V2和V3在不同变量的重要性得分对比如下:
在这里插入图片描述
在这里插入图片描述
V3的acc和loss如下:
在这里插入图片描述
V3模型的结果:
在这里插入图片描述
PART2:属性对齐
相关研究:

目前许多属性对齐是基于神经机器翻译的词对齐来实现的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
研究的热点:如何在Transformer上改进解释效果?

痛点:缺少平⾏语料和弱监督信号,如何从数据本身挖掘?

属性分类-冷启动数据准备:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
商品属性分类:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

商品属性对⻬—数据集构造:

数据来源于宝贝详情+标题NER,将数据分为两部分:生产属性集source和营销属性集target。
在这里插入图片描述
属性对齐模型有如下三个版本:

属性对齐模型 – V1版:Vanilla bi-LSTM Encoder + Decoder
在这里插入图片描述
问题:
在这里插入图片描述
对问题的分析:

·RNN的编码方式耦合了输入顺序
·本质:CPV不严格是序列关系
·Over/under translation problem
·需要追踪之前的注意力分布做模型约束

改进:

·编码器替换为Transformer
·平均池化作为全局语义向量
·考虑到解释性,折中使用单层
·引入Coverage机制作为多目标loss
·分类标签修正,增加差异性

属性对齐模型 – V2版:Transformer Encoder + Decoder
在这里插入图片描述
属性对齐模型 – V3版:V2 + Coverage constraint
在这里插入图片描述
矩阵分解+后处理:

1.矩阵分解:对营销属性x,取score Top2生产属性y,组成pair对(x, y)作为候选。以叶子类目为单位,聚合所有pair对。
2.排序规则:
在这里插入图片描述
3.对⻬结果导出:

CPV对⻬表1:⽣产 → 营销

CPV对⻬表2:营销 → ⽣产
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
后续改进:1.针对丰富度、差异性不⾜的类⽬优化,2.pipeline形式的误差累积。

PART3:场景应⽤
应用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
多场景赋能:
在这里插入图片描述

这篇关于属性归因和对齐在商品企划中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080601

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA