go sync包(二) 互斥锁(二)

2024-06-21 02:20
文章标签 go 互斥 sync

本文主要是介绍go sync包(二) 互斥锁(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

互斥锁 Mutex

mutex 的 加解锁很简单:

	var mutex sync.Mutexmutex.Lock()defer mutex.Unlock()// 加锁期间的代码逻辑

加锁

// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex) Lock() {// Fast path: grab unlocked mutex.if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {if race.Enabled {race.Acquire(unsafe.Pointer(m))}return}// Slow path (outlined so that the fast path can be inlined)m.lockSlow()
}
  • 当我们调用 Lock 方法的时候,会先尝试走 Fast Path,也就是如果当前互斥锁如果处于未加锁的状态,尝试加锁,只要加锁成功就直接返回。
  • 否则的话就进入 slow path。
func (m *Mutex) lockSlow() {var waitStartTime int64 // 等待时间starving := false // 是否处于饥饿状态awoke := false // 是否处于唤醒状态iter := 0 // 自旋迭代次数old := m.state for {// Don't spin in starvation mode, ownership is handed off to waiters// so we won't be able to acquire the mutex anyway.// 判断当前 Goroutine 能否进入自旋// 条件:// 当前处于普通模式 && runtime_canSpin 返回 true// runtime_canSpin 返回 true//     1. 运行在多 CPU 的机器上//     2. 自旋次数不超过 4 次//     3. 当前机器上至少存在一个正在运行的处理器 P 并且处理的运行队列为空if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {// Active spinning makes sense.// Try to set mutexWoken flag to inform Unlock// to not wake other blocked goroutines.// 尝试设置 mutexWoken 状态,避免唤醒其他休眠的 goroutineif !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {awoke = true}// 自旋:执行 30 次 PAUSE指令,占用CPU并消耗CPU时间runtime_doSpin()iter++old = m.statecontinue}// 计算互斥锁的最新状态new := old// Don't try to acquire starving mutex, new arriving goroutines must queue.if old&mutexStarving == 0 {new |= mutexLocked}// 饥饿模式 || 锁已经被其他goroutine获取// 加入等待队列if old&(mutexLocked|mutexStarving) != 0 {new += 1 << mutexWaiterShift}// The current goroutine switches mutex to starvation mode.// But if the mutex is currently unlocked, don't do the switch.// Unlock expects that starving mutex has waiters, which will not// be true in this case.if starving && old&mutexLocked != 0 {new |= mutexStarving}if awoke {// The goroutine has been woken from sleep,// so we need to reset the flag in either case.if new&mutexWoken == 0 {throw("sync: inconsistent mutex state")}new &^= mutexWoken}// CAS更新状态获取锁// 正常模式:这段代码会设置唤醒和饥饿标记、重置迭代次数并重新执行获取锁的循环。// 饥饿模式: 当前 Goroutine 会获得互斥锁,如果等待队列中只存在当前 Goroutine,// 互斥锁还会从饥饿模式中退出。if atomic.CompareAndSwapInt32(&m.state, old, new) {if old&(mutexLocked|mutexStarving) == 0 {break // locked the mutex with CAS}// If we were already waiting before, queue at the front of the queue.// 正在等,排在最前面queueLifo := waitStartTime != 0// 设置初始化时间,计算是否超过时间要切换到公平模式if waitStartTime == 0 {waitStartTime = runtime_nanotime()}// 阻塞runtime_SemacquireMutex(&m.sema, queueLifo, 1)// 看是否超过 1ms,是的话就切换到公平模式starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNsold = m.state// 饥饿模式if old&mutexStarving != 0 {// If this goroutine was woken and mutex is in starvation mode,// ownership was handed off to us but mutex is in somewhat// inconsistent state: mutexLocked is not set and we are still// accounted as waiter. Fix that.if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {throw("sync: inconsistent mutex state")}// 退出饥饿模式delta := int32(mutexLocked - 1<<mutexWaiterShift)if !starving || old>>mutexWaiterShift == 1 {// Exit starvation mode.// Critical to do it here and consider wait time.// Starvation mode is so inefficient, that two goroutines// can go lock-step infinitely once they switch mutex// to starvation mode.delta -= mutexStarving}atomic.AddInt32(&m.state, delta)break}awoke = trueiter = 0} else {old = m.state}}if race.Enabled {race.Acquire(unsafe.Pointer(m))}
}
  1. 判断当前 goroutine 能否可以进入自旋状态,可以的话自旋争抢锁。
    进入自旋状态的条件:
    • 普通模式
    • 运行在多 CPU 的机器上
    • 自旋次数不超过 4 次
    • 当前机器上至少存在一个正在运行的处理器 P 并且处理的运行队列为空
  2. 普通模式:被唤醒的 goroutine 跟新到来的 goroutine 争抢锁。
    饥饿模式:新到来的 goroutine 自动加入队列末尾,由队列第一个 goroutine 获得锁。
  3. 饥饿模式:
    进入条件:如果当前 goroutine 超过 1ms 都没有获取到锁就会进饥饿模式。
    退出条件:当前 goroutine 是队列中最后一个 goroutine。

解锁

// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {if race.Enabled {_ = m.staterace.Release(unsafe.Pointer(m))}// Fast path: drop lock bit.new := atomic.AddInt32(&m.state, -mutexLocked)if new != 0 {// Outlined slow path to allow inlining the fast path.// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.m.unlockSlow(new)}
}
  • 如果该函数返回的新状态等于 0,当前 Goroutine 就成功解锁了互斥锁。
  • 如果该函数返回的新状态不等于 0,这段代码会调用 sync.Mutex.unlockSlow 开始慢速解锁。
func (m *Mutex) unlockSlow(new int32) {// 校验锁状态的合法性// 如果当前互斥锁已经被解锁过,直接抛出异常中止当前程序if (new+mutexLocked)&mutexLocked == 0 {fatal("sync: unlock of unlocked mutex")}// 普通模式if new&mutexStarving == 0 {old := newfor {// If there are no waiters or a goroutine has already// been woken or grabbed the lock, no need to wake anyone.// In starvation mode ownership is directly handed off from unlocking// goroutine to the next waiter. We are not part of this chain,// since we did not observe mutexStarving when we unlocked the mutex above.// So get off the way.// // 没有等待者 || 已经被加锁 || 已经被解锁 || 公平锁if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {return}// Grab the right to wake someone.// 唤醒一个等待者new = (old - 1<<mutexWaiterShift) | mutexWokenif atomic.CompareAndSwapInt32(&m.state, old, new) {runtime_Semrelease(&m.sema, false, 1)return}old = m.state}} else {// Starving mode: handoff mutex ownership to the next waiter, and yield// our time slice so that the next waiter can start to run immediately.// Note: mutexLocked is not set, the waiter will set it after wakeup.// But mutex is still considered locked if mutexStarving is set,// so new coming goroutines won't acquire it.// 饥饿模式// 将当前锁让给下一个等待者// 这里不会解除饥饿模式,所以新来的goroutine不会获得锁runtime_Semrelease(&m.sema, true, 1)}
}// Semrelease atomically increments *s and notifies a waiting goroutine
// if one is blocked in Semacquire.
// It is intended as a simple wakeup primitive for use by the synchronization
// library and should not be used directly.
// If handoff is true, pass count directly to the first waiter.
// skipframes is the number of frames to omit during tracing, counting from
// runtime_Semrelease's caller.// hadoff:
// true: 唤醒并直接移交给第一个等待者
// false: 只是唤醒操作
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)

小结

互斥锁的加锁过程比较复杂,它涉及自旋、信号量以及调度等概念:

  • 如果互斥锁处于初始化状态,会通过置位 mutexLocked 加锁。
  • 如果互斥锁处于 mutexLocked 状态并且在普通模式下工作,会进入自旋,执行 30 次 PAUSE 指令消耗 CPU 时间等待锁的释放。
  • 如果当前 Goroutine 等待锁的时间超过了 1ms,互斥锁就会切换到饥饿模式。
  • 互斥锁在正常情况下会通过 runtime.sync_runtime_SemacquireMutex 将尝试获取锁的 Goroutine 切换至休眠状态,等待锁的持有者唤醒(阻塞)。
  • 如果当前 Goroutine 是互斥锁上的最后一个等待的协程,那么它会将互斥锁切换回正常模式。

互斥锁的解锁过程比较简单:

  • 当互斥锁已经被解锁时,调用 sync.Mutex.Unlock 会直接抛出异常。
  • 当互斥锁处于饥饿模式时,将锁的所有权交给队列中的下一个等待者,等待者会负责设置 mutexLocked 标志位。
  • 当互斥锁处于普通模式时,如果没有 Goroutine 等待锁的释放或者已经有被唤醒的 Goroutine 获得了锁,会直接返回。在其他情况下会通过 sync.runtime_Semrelease 唤醒对应的 Goroutine。

这篇关于go sync包(二) 互斥锁(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079942

相关文章

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

java线程深度解析(二)——线程互斥技术与线程间通信

http://blog.csdn.net/daybreak1209/article/details/51307679      在java多线程——线程同步问题中,对于多线程下程序启动时出现的线程安全问题的背景和初步解决方案已经有了详细的介绍。本文将再度深入解析对线程代码块和方法的同步控制和多线程间通信的实例。 一、再现多线程下安全问题 先看开启两条线程,分别按序打印字符串的

Go Select的实现

select语法总结 select对应的每个case如果有已经准备好的case 则进行chan读写操作;若没有则执行defualt语句;若都没有则阻塞当前goroutine,直到某个chan准备好可读或可写,完成对应的case后退出。 Select的内存布局 了解chanel的实现后对select的语法有个疑问,select如何实现多路复用的,为什么没有在第一个channel操作时阻塞 从而导

Go Channel的实现

channel作为goroutine间通信和同步的重要途径,是Go runtime层实现CSP并发模型重要的成员。在不理解底层实现时,经常在使用中对channe相关语法的表现感到疑惑,尤其是select case的行为。因此在了解channel的应用前先看一眼channel的实现。 Channel内存布局 channel是go的内置类型,它可以被存储到变量中,可以作为函数的参数或返回值,它在r

Go 数组赋值问题

package mainimport "fmt"type Student struct {Name stringAge int}func main() {data := make(map[string]*Student)list := []Student{{Name:"a",Age:1},{Name:"b",Age:2},{Name:"c",Age:3},}// 错误 都指向了最后一个v// a

Go组合

摘要 golang并非完全面向对象的程序语言,为了实现面向对象的继承这一神奇的功能,golang允许struct间使用匿名引入的方式实现对象属性方法的组合 组合使用注意项 使用匿名引入的方式来组合其他struct 默认优先调用外层方法 可以指定匿名struct以调用内层方法 代码 package mainimport ("fmt")type People struct{}type Pe