【机器学习300问】127、怎么使用词嵌入?

2024-06-20 14:44

本文主要是介绍【机器学习300问】127、怎么使用词嵌入?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在探讨如何使用词嵌入之前,我们首先需要理解词嵌入模型的基础。之前的文章已提及,词嵌入技术旨在将文本转换为固定长度的向量,从而使计算机能够解析和理解文本内容。可以跳转下面链接去补充阅读哦!

【机器学习300问】126、词嵌入(Word Embedding)是什么意思?icon-default.png?t=N7T8https://blog.csdn.net/qq_39780701/article/details/139803883        那么,词嵌入模型又是什么呢?简而言之,词嵌入模型是一套特定的方法(通常是深度学习算法),它通过这些方法生成一个词嵌入矩阵。这个矩阵究竟是什么呢?它实际上是由一系列词嵌入向量组合而成的,每个向量代表一个词汇,从而构成了一个独特的词汇表示矩阵。更多的细节在下文中逐一展开。

一、词嵌入矩阵

一上来直接看词嵌入矩阵长什么样:

嵌入矩阵

        词嵌入矩阵长什么样子其实很清楚,没什么神秘的,但知道它张什么样并不是最关键的。关键点在于它的本质是什么?它怎么来的?以及它有什么用?想要回答出这些问题就得先从最一开始的问题:如何才能让计算机读懂人类的文字?实际上众多NLP概念都上从这个问题出发的,始终带着这个最初问题去学习,能让你有清晰的感受,解答众多“为什么这样做?”的疑惑。

(1)词嵌入矩阵的本质

        词嵌入矩阵,本质是一个词汇表,就是把词向量堆叠了起来,它的行数对应词汇表中词的数量,列数则是词嵌入的维度,即每个词向量的长度。矩阵中的每个元素代表了词汇表中某个词的一个特定维度上的值。

        例如上图中,词汇表有5000个不同的词,且词嵌入维度设为128,那么词嵌入矩阵就是一个5000行 x 128列的矩阵。计算机要想读懂某个词,通过查找词汇表中每个词的索引,就可以直接从矩阵中获取其对应的词嵌入向量。

(2)词嵌入矩阵怎么构建的?

        上面说到了词嵌入矩阵本质是一个特殊的词汇表(能让计算机真正读懂文字的词汇表),词嵌入矩阵通常是词嵌入机器学习算法在训练过程中动态学习得到。这一部分比较庞大,而且很重要,所以我单独写一篇文章来说,这里先简单提一下。矩阵可以通过无监督学习方法(如Word2Vec、GloVe)预先训练好,然后固定或微调使用。

        生成词嵌入矩阵的算法模型,被叫做“词嵌入模型或词嵌入算法”如:Word2Vec

(3)词嵌入矩阵有什么用?

        词嵌入矩阵E一旦构建完成后,通过与分词后的One-Hot编码矩阵进行运算,即可得到每一个词的词向量。

词嵌入矩阵的使用方式

用数学公式表达:

O_j \cdot E = e_j 

        其中,O_j是指某个词的one-hot编码, E是词嵌入矩阵,e_j是指这个词对应的词向量。

        这里讲的“有什么用?”不是指嵌入矩阵能用在什么地方,而是特指:词嵌入矩阵能够和one-hot编码向量相乘得到该词的词向量。

求出的结果是每个词的词向量

二、 怎么使用词嵌入?

        使用词嵌入技术通常有固定的基本步骤,下面就逐一介绍:

(1)基本步骤说明

① 选择或构建词嵌入模型

  • 选择现有模型:如Word2Vec、GloVe、FastText等,这些是预训练好的词嵌入模型,可以直接下载使用。
  • 自定义训练:如果你的领域有特定的语言习惯或术语,可能需要基于自己的语料库训练词嵌入模型。

② 准备语料库

  • 清洗和预处理文本数据,去除噪声,如标点符号、数字、停用词等。
  • 可能需要分词,尤其是对于非英语语言,如中文需要进行分词处理。

③ 构建词汇表并编码

  • 将语料库中所有出现过的单词或短语对应一个唯一的索引。
  • 利用这个索引,将词汇编码成一个One-Hot词汇表。

④ 转换文本为向量表示(词嵌入)

  • 将One-Hot编码通过与嵌入矩阵相乘得到想要词汇的词向量。
  • 然后你还可以采用平均法、加权平均法或者使用RNN/LSTM等模型结合上下文信息来聚合单个词向量为整个句子或文档的向量表示。

(2)举例说明

        用一个简化的过程来说明,如何使用词嵌入技术处理句子“我喜欢学习数学”,并假设有一个词汇表大小为5000,每个词的嵌入维度为128的词嵌入矩阵。

① 步骤1:选择一个现有的模型

② 步骤2:准备语料库

        使用只有一句话的语料库,简单说明一下。s=“我喜欢学习数学”

③ 步骤3:文本预处理

  • 分词:将句子“我喜欢学数学”分词为["我", "喜欢", "学习", "数学"]
  • 构建词汇表索引:假设这四个词都在我们的5000词词汇表内,且分别对应索引1、2、3、5000。
  • 进行One-Hot编码:将词语使用One-Hot进行编码,产生一个词汇矩阵V

③ 步骤3:文本转为向量(词嵌入)

假设我们已有一个(5000, 128)的词嵌入矩阵E,其中每一行代表一个词的128维向量。

通过运算得出想要的词向量:

这篇关于【机器学习300问】127、怎么使用词嵌入?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1078426

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,