Callback in C++

2024-06-20 05:48
文章标签 c++ callback

本文主要是介绍Callback in C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Callback in C++

非原创,转载自:
https://stackoverflow.com/questions/2298242/callback-functions-in-c

文章目录

  • Callback in C++
    • 非原创,转载自: https://stackoverflow.com/questions/2298242/callback-functions-in-c
    • @[TOC](文章目录)
  • 1. What are callables in C++(11)
  • 2. Function Pointer
    • 2.1 notation for function pointer
    • 2.2 Callback call notation
    • 2.3 Example
  • 3. Pointer to member function
    • 3.1 Pointer notation
    • 3.2 Callback call notation
    • 3.3 Callback use notation and compatible types
  • 4. std::function objects
    • 4.1 notation
    • 4.2 Callback call notation
    • 4.3 Callback use notation and compatible types
      • 4.3.1 Function pointer and pointer to member function
      • 4.3.2 Lambda expressions
      • 4.3.3 std::bind expression
      • 4.3.4 Function objects
    • Example
  • Extra notes
    • about std::bind
    • about lambda expression

提示:以下是本篇文章正文内容,下面案例可供参考

1. What are callables in C++(11)

Callback functionality can be realized in several ways in C++(11) since several different things turn out to be callable*:

Function pointers (including pointers to member functions)
std::function objects
Lambda expressions
Bind expressions
Function objects (classes with overloaded function call operator operator())

2. Function Pointer

Let’s have a simple function foo first:

int foo (int x) {return x + 2}

2.1 notation for function pointer

basic notation:

return_type (*)(parameter_type_1, parameter_type_2, parameter_type_3)
// i.e. a pointer to foo has the type:
int (*)(int)

with name:

return_type (* name) (parameter_type_1, parameter_type_2, parameter_type_3)// i.e. f_int_t is a type: function pointer taking one int argument, returning int
typedef int (*f_int_t) (int); // foo_p is a pointer to function taking int returning int
// initialized by pointer to function foo taking int returning int
int (* foo_p)(int) = &foo; 
// can alternatively be written as 
f_int_t foo_p = &foo;

instead of typedef, you can also use:

using f_int_t = int(*)(int);

And a declaration of a function using a callback of function pointer type will be:

// foobar having a callback argument named moo of type 
// pointer to function returning int taking int as its argument
int foobar (int x, int (*moo)(int));
// if f_int is the function pointer typedef from above we can also write foobar as:
int foobar (int x, f_int_t moo);

2.2 Callback call notation

The call notation follows simple function call syntax

int foobar (int x, int (*moo)(int))
{return x + moo(x); // function pointer moo called using argument x
}
// analog
int foobar (int x, f_int_t moo)
{return x + moo(x); // function pointer moo called using argument x
}

2.3 Example

A function ca be written that doesn’t rely on how the callback works:

void tranform_every_int(int * v, unsigned n, int (*fp)(int))
{for (unsigned i = 0; i < n; ++i){v[i] = fp(v[i]);}
}

where possible callback could be:

int double_int(int x) { return 2*x; }
int square_int(int x) { return x*x; }

used like

int a[5] = {1, 2, 3, 4, 5};
tranform_every_int(&a[0], 5, double_int);
// now a == {2, 4, 6, 8, 10};
tranform_every_int(&a[0], 5, square_int);
// now a == {4, 16, 36, 64, 100};

3. Pointer to member function

A pointer to member function (of some class C) is a special type of (and even more complex) function pointer which requires an object of type C to operate on.

struct C
{int y;int foo(int x) const { return x+y; }
};

3.1 Pointer notation

A pointer to member function type for some class T has the notation

// can have more or less parameters
return_type (T::*)(parameter_type_1, parameter_type_2, parameter_type_3)
// i.e. a pointer to C::foo has the type
int (C::*) (int)

where a named pointer to member function is like:

return_type (T::* name) (parameter_type_1, parameter_type_2, parameter_type_3)// i.e. a type `f_C_int` representing a pointer to member function of `C`
// taking int returning int is:
typedef int (C::* f_C_int_t) (int x); // The type of C_foo_p is a pointer to member function of C taking int returning int
// Its value is initialized by a pointer to foo of C
int (C::* C_foo_p)(int) = &C::foo;
// which can also be written using the typedef:
f_C_int_t C_foo_p = &C::foo;

when passing as a parameter:

// C_foobar having an argument named moo of type pointer to member function of C
// where the callback returns int taking int as its argument
// also needs an object of type c
int C_foobar (int x, C const &c, int (C::*moo)(int));
// can equivalently declared using the typedef above:
int C_foobar (int x, C const &c, f_C_int_t moo);

3.2 Callback call notation

The pointer to member function of C can be invoked, with respect to an object of type C by using member access operations on the dereferenced pointer. Note: Parenthesis required!

int C_foobar (int x, C const &c, int (C::*moo)(int))
{return x + (c.*moo)(x); // function pointer moo called for object c using argument x
}
// analog
int C_foobar (int x, C const &c, f_C_int_t moo)
{return x + (c.*moo)(x); // function pointer moo called for object c using argument x
}

Note: If a pointer to C is available the syntax is equivalent (where the pointer to C must be dereferenced as well):

int C_foobar_2 (int x, C const * c, int (C::*meow)(int))
{if (!c) return x;// function pointer meow called for object *c using argument xreturn x + ((*c).*meow)(x); 
}
// or equivalent:
int C_foobar_2 (int x, C const * c, int (C::*meow)(int))
{if (!c) return x;// function pointer meow called for object *c using argument xreturn x + (c->*meow)(x); 
}

3.3 Callback use notation and compatible types

A callback function taking a member function pointer of class T can be called using a member function pointer of class T.

C my_c{2}; // aggregate initializationint a = 5;int b = C_foobar(a, my_c, &C::foo); // call C_foobar with pointer to foo as its callback

4. std::function objects

under header ;
The std::function class is a polymorphic function wrapper to store, copy or invoke callables.

4.1 notation

The type of a std::function object storing a callable looks like:

std::function<return_type(parameter_type_1, parameter_type_2, parameter_type_3)>// i.e. using the above function declaration of foo:
std::function<int(int)> stdf_foo = &foo;
// or C::foo:
std::function<int(const C&, int)> stdf_C_foo = &C::foo;

4.2 Callback call notation

The class std::function has operator() defined which can be used to invoke its target.

int stdf_foobar (int x, std::function<int(int)> moo)
{return x + moo(x); // std::function moo called
}
// or 
int stdf_C_foobar (int x, C const &c, std::function<int(C const &, int)> moo)
{return x + moo(c, x); // std::function moo called using c and x
}

4.3 Callback use notation and compatible types

4.3.1 Function pointer and pointer to member function

A function pointer

int a = 2;
int b = stdf_foobar(a, &foo);
// b == 6 ( 2 + (2+2) )

or a pointer to member function

int a = 2;
C my_c{7}; // aggregate initialization
int b = stdf_C_foobar(a, c, &C::foo);
// b == 11 == ( 2 + (7+2) )

4.3.2 Lambda expressions

An unnamed closure from a lambda expression can be stored in a std::function object:

int a = 2;
int c = 3;
int b = stdf_foobar(a, [c](int x) -> int { return 7+c*x; });
// b == 15 ==  a + (7*c*a) == 2 + (7+3*2)

4.3.3 std::bind expression

the result of std::bind is returned as a functional object. like:

int foo_2 (int x, int y) { return 9*x + y; }
using std::placeholders::_1;int a = 2;
int b = stdf_foobar(a, std::bind(foo_2, _1, 3));
// b == 23 == 2 + ( 9*2 + 3 )
int c = stdf_foobar(a, std::bind(foo_2, 5, _1));
// c == 49 == 2 + ( 9*5 + 2 )

Where also objects can be bound as the object for the invocation of pointer to member functions:

int a = 2;
C const my_c{7}; // aggregate initialization
int b = stdf_foobar(a, std::bind(&C::foo, my_c, _1));
// b == 1 == 2 + ( 2 + 7 )

4.3.4 Function objects

Objects of classes having a proper operator() overload can be stored inside a std::function object, as well.

struct Meow
{int y = 0;Meow(int y_) : y(y_) {}int operator()(int x) { return y * x; }
};
int a = 11;
int b = stdf_foobar(a, Meow{8});
// b == 99 == 11 + ( 8 * 11 )

Example

Changing the function pointer example to use std::function

void stdf_tranform_every_int(int * v, unsigned n, std::function<int(int)> fp)
{for (unsigned i = 0; i < n; ++i){v[i] = fp(v[i]);}
}

gives a whole lot more utility to that function because (see 3.3) we have more possibilities to use it:

// using function pointer still possible
int a[5] = {1, 2, 3, 4, 5};
stdf_tranform_every_int(&a[0], 5, double_int);
// now a == {2, 4, 6, 8, 10};// use it without having to write another function by using a lambda
stdf_tranform_every_int(&a[0], 5, [](int x) -> int { return x/2; });
// now a == {1, 2, 3, 4, 5}; again// use std::bind :
int nine_x_and_y (int x, int y) { return 9*x + y; }
using std::placeholders::_1;
// calls nine_x_and_y for every int in a with y being 4 every time
stdf_tranform_every_int(&a[0], 5, std::bind(nine_x_and_y, _1, 4));
// now a == {13, 22, 31, 40, 49};

Extra notes

about std::bind

https://thispointer.com/stdbind-tutorial-and-usage-details/
useful STL:
std::count_if
std::count_if Returns the number of elements in the range [firstValue,lastValue) for which predFunctionObject is true.
std::find_if

about lambda expression

C++ 11 introduced lambda expression to allow us write an inline function which can be used for short snippets of code that are not going to be reuse and not worth naming. In its simplest form lambda expression can be defined as follows:

[ capture clause ] (parameters) -> return-type  
{   definition of method   
} 

Generally return-type in lambda expression are evaluated by compiler itself and we don’t need to specify that explicitly and -> return-type part can be ignored but in some complex case as in conditional statement, compiler can’t make out the return type and we need to specify that.
Various uses of lambda expression with standard function are given below :

// Function to print vector
void printVector(vector<int> v)
{// lambda expression to print vectorfor_each(v.begin(), v.end(), [](int i){std::cout << i << " ";});cout << endl;
}int main()
{vector<int> v {4, 1, 3, 5, 2, 3, 1, 7};printVector(v);// below snippet find first number greater than 4// find_if searches for an element for which// function(third argument) returns truevector<int>:: iterator p = find_if(v.begin(), v.end(), [](int i){return i > 4;});cout << "First number greater than 4 is : " << *p << endl;// function to sort vector, lambda expression is for sorting in// non-increasing order Compiler can make out return type as// bool, but shown here just for explanationsort(v.begin(), v.end(), [](const int& a, const int& b) -> bool{return a > b;});
}

A lambda expression can have more power than an ordinary function by having access to variables from the enclosing scope. We can capture external variables from enclosing scope by three ways :
Capture by reference
Capture by value
Capture by both (mixed capture)
Syntax used for capturing variables :
[&] : capture all external variable by reference
[=] : capture all external variable by value
[a, &b] : capture a by value and b by reference
A lambda with empty capture clause [ ] can access only those variable which are local to it.
Capturing ways are demonstrated below :

// C++ program to demonstrate lambda expression in C++
#include <bits/stdc++.h>
using namespace std;int main()
{vector<int> v1 = {3, 1, 7, 9};vector<int> v2 = {10, 2, 7, 16, 9};// access v1 and v2 by referenceauto pushinto = [&] (int m){v1.push_back(m);v2.push_back(m);};// it pushes 20 in both v1 and v2pushinto(20);// access v1 by copy[v1](){for (auto p = v1.begin(); p != v1.end(); p++){cout << *p << " ";}};int N = 5;// below snippet find first number greater than N// [N] denotes, can access only N by valuevector<int>:: iterator p = find_if(v1.begin(), v1.end(), [N](int i){return i > N;});cout << "First number greater than 5 is : " << *p << endl;// function to count numbers greater than or equal to N// [=] denotes, can access all variableint count_N = count_if(v1.begin(), v1.end(), [=](int a){return (a >= N);});cout << "The number of elements greater than or equal to 5 is : "<< count_N << endl;
}

这篇关于Callback in C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077279

相关文章

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C