C++堆内存空间详解(释放内存、内存泄露)

2024-06-19 18:48

本文主要是介绍C++堆内存空间详解(释放内存、内存泄露),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

家里要来客人了,我们要给客人们泡茶。如果规定只能在确定来几位客人之前就把茶泡好,这就会显得很尴尬:茶泡多了会造成浪费,泡少了怕怠慢了客人。所以,最好的方法就是等知道了来几位客人再泡茶,来几位客人就泡几杯茶。

然而,我们在使用数组的时候也会面临这种尴尬: 数组的存储空间必须在程序运行前申请,即数组的大小在编译前必须是已知的常量表达式。空间申请得太大会造成浪费,空间申请得太小会造成数据溢出而使得程序异常。所以,为了解决这个问题,我们需要能够在程序运行时根据实际情况申请内存空间。

在C++中,允许我们在程序运行时根据自己的需要申请一定的内存空间,我们把它称为堆内存(Heap)空间

如何获得堆内存空间

我们用操作符new来申请堆内存空间,其语法格式为:
    new 数据类型[表达式];
其中,表达式可以是一个整型正常量,也可以是一个有确定值的整型正变量, 其作用类似声明数组时的元素个数,所以两旁的中括号不可省略。如果我们只申请一个变量的空间,则该表达式可以被省略,即写作:
    new 数据类型;

使用new操作符后,会返回一个对应数据类型的指针,该指针指向了空间的首元素。所以,我们在使用new操作符之前需要声明一个对应类型的指针,来接受它的返回值。如下面程序段:
int *iptr;//声明一个指针
int size;//声明整型变量,用于输入申请空间的大小
cin >>size;//输入一个正整数
iptr=new int[size];//申请堆内存空间,接受new的返回值

我们又知道,数组名和指向数组首元素的指针是等价的。所以,对于iptr我们可以认为是一个整型数组。于是,我们实现了在程序运行时,根据实际情况来申请内存空间。

释放内存

当一个程序运行完毕之后,它所使用的数据就不再需要。由于内存是有限的,所以它原来占据的内存空间也应该释放给别的程序使用。对于普通变量和数组,在程序结束运行以后,系统会自动将它们的空间回收。然而对于我们自己分配的堆内存空间,大多数系统都不会将它们回收。 如果我们不人为地对它们进行回收,只“借”不“还”,那么系统资源就会枯竭,电脑的运行速度就会越来越慢,直至整个系统崩溃。我们把这种只申请空间不释放空间的情况称为内存泄露(Memory Leak)

确认申请的堆内存空间不再使用后,我们用delete操作符来释放堆内存空间,其语法格式为:
    delete [] 指向堆内存首元素的指针;
如果申请的是一个堆内存变量,则delete后的[]可以省略;如果申请的是一个堆内存数组,则该[]不能省略,否则还是会出现内存泄露。另外,我们也不难发现,delete后的指针就是通过new获得的指针,如果该指针的数据被修改或丢失,也可能造成内存泄露。

下面我们来看一段程序,实践堆内存的申请和回收:(程序8.7)
#include "iostream.h"
int main()
{
   int size;
   float sum=0;
   int *heapArray;
   cout <<"请输入元素个数:";
   cin >>size;
   heapArray=new int[size];
   cout <<"请输入各元素:" <<endl;
   for (int i=0;i<size;i++)
   {
      cin >>heapArray[i];
      sum=sum+heapArray[i];
   }
   cout <<"这些数的平均值为" <<sum/size <<endl;
   delete [] heapArray;
   return 0;
}

运行结果:
请输入元素个数:5
请输入各元素:
1 3 4 6 8
这些数的平均值为4.4
可见,申请的堆内存数组在使用上和一般的数组并无差异。 我们需要记住的是,申请了资源用完了就一定要释放,这是程序员的好习惯,也是一种责任。

那么,我们能不能来申请一个二维的堆内存数组呢?事实上,new 数据类型[表达式][表达式]的写法是不允许的。所以,如果有需要,最简单的方法就是用一个一维数组来代替一个二维数组。这就是上一章最后一小段文字的意义所在。


原文:http://see.xidian.edu.cn/cpp/biancheng/view/51.html

这篇关于C++堆内存空间详解(释放内存、内存泄露)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075850

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝