GLMBlock中的计算过程拆解

2024-06-19 06:36
文章标签 计算 过程 拆解 glmblock

本文主要是介绍GLMBlock中的计算过程拆解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面我将详细介绍代码中每一个部分,并用LaTeX公式来表示各个步骤的数学运算。

类 GLMBlock

该类继承自 torch.nn.Module,表示一个单一的Transformer层。Transformer层接收尺寸为 [s, b, h] 的输入,并返回相同尺寸的输出。

class GLMBlock(torch.nn.Module):"""A single transformer layer.Transformer layer takes input with size [s, b, h] and returns anoutput of the same size."""

初始化方法

初始化方法定义了该层的各个组件,包括输入层的层归一化、自注意力机制、注意力输出的层归一化和MLP层。

def __init__(self, config: ChatGLMConfig, layer_number, device=None):super(GLMBlock, self).__init__()self.layer_number = layer_numberself.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernormself.fp32_residual_connection = config.fp32_residual_connectionLayerNormFunc = RMSNorm if config.rmsnorm else LayerNormself.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,dtype=config.torch_dtype)self.self_attention = SelfAttention(config, layer_number, device=device)self.hidden_dropout = config.hidden_dropoutself.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,dtype=config.torch_dtype)self.mlp = MLP(config, device=device)

前向传播方法

前向传播方法定义了数据流经各个组件的方式。

def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True):# hidden_states: [s, b, h]
1. 输入层归一化

对输入进行层归一化。

layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

layernorm_output = self.input_layernorm(hidden_states)
2. 自注意力机制

将归一化后的输出传递给自注意力层,并获取注意力输出和更新后的缓存。

attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

attention_output, kv_cache = self.self_attention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache
)
3. 残差连接

根据配置决定残差连接的位置。

residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

if self.apply_residual_connection_post_layernorm:residual = layernorm_output
else:residual = hidden_states
4. 添加Dropout并进行第二次层归一化

layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
layernorm_input = residual + layernorm_inputlayernorm_output = self.post_attention_layernorm(layernorm_input)
5. MLP层

mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

mlp_output = self.mlp(layernorm_output)
6. 第二次残差连接和输出Dropout

residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

if self.apply_residual_connection_post_layernorm:residual = layernorm_output
else:residual = layernorm_inputoutput = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
output = residual + output
返回输出和缓存
return output, kv_cache

总结

通过这种方式,GLMBlock类实现了一个Transformer层,其中包括层归一化、自注意力机制、残差连接、Dropout和MLP层。各个步骤通过LaTeX公式表示如下:

  1. 输入层归一化:
    layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

  2. 自注意力机制:
    attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

  3. 残差连接:
    residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

  4. 添加Dropout并进行第二次层归一化:
    layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
    layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
    layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

  5. MLP层:
    mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

  6. 第二次残差连接和输出Dropout:
    residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
    output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
    output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

这篇关于GLMBlock中的计算过程拆解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074272

相关文章

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

SpringBoot整合InfluxDB的详细过程

《SpringBoot整合InfluxDB的详细过程》InfluxDB是一个开源的时间序列数据库,由Go语言编写,适用于存储和查询按时间顺序产生的数据,它具有高效的数据存储和查询机制,支持高并发写入和... 目录一、简单介绍InfluxDB是什么?1、主要特点2、应用场景二、使用步骤1、集成原生的Influ