归并排序的应用—计算逆序对的个数

2024-06-18 04:04

本文主要是介绍归并排序的应用—计算逆序对的个数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

归并排序的应用—计算逆序对的个数

    • 什么是逆序对
    • 题目的思路
  • 题目

如果你还不会归并排序,那么请你先学会它,再来看本篇文章效果更佳。

什么是逆序对

逆序对的定义:在一个数列中,如果前面的数字大于后面的数字,那么这两个数字就构成了一个逆序对。

在这里插入图片描述

比如数列是这样的。

如果找 数字4 能够匹配成的逆序对,那么就有下列的这几对

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
如果找数字 9 匹配的,那么它后面的数字都比9小,所以后面的数字都可以和9组成 逆序对。

题目的思路

在讲解题目之前我们需要知道一个理论知识。

在这里插入图片描述
假设我们有两组序列。

其中红色区域内的数字 无论怎么在红色区域内部 “动”,绿色区域内与它匹配的逆序对都不会改变

比如红色区域有一个 9,那么它在红色区域内的任意一个地方,绿色区域与它匹配的逆序对的数量都是 固定的。


接着我们还需要一个理论知识。

在这里插入图片描述
比如我需要算这个序列的 逆序对。

在这里插入图片描述
我们可以分别计算 这两个区间内部的逆序对。

很明显都是1。

在算完了 6 和 5 的逆序对后,这两个数字的位置就可以任意更换了,2 和 8 也同理。

怎么变都不会影响,它们与其他区间的逆序对。

所以我们可以让他们都变为一个有序的序列。
在这里插入图片描述
接着我们需要知道 两个有序数列 怎么求 它们的逆序对的个数。

还记得我们 归并排序中 “合” 的过程吗?

我们需要通过一个临时数组 来 达到排序的效果。

在这里插入图片描述
也就是在这个过程,就是计算逆序对个数的核心。

在这里插入图片描述
归并排序中 合 的时候会比较下标i 和 j 的 值,小的放在临时数组中。。

此时如果是 右边的序列,也就是 j 的那边 如果小了,那么此时 i 到 右边区间尾的这段数字 都会比 此时的 j 下标的数字 要小。

比如此时 图中的 2会放到临时数组中。

在这里插入图片描述
此时就说明了,下标 i 的数字及后面的数字一定是 比 2 要大的,那么这些数字都可以和 2 组成逆序对。

此时逆序对的数量应该是 mid - i + 1。
在这里插入图片描述

因为 mid 指向的是 左边最后一个下标,mid - i + 1 就是 i ~ mid 的数量。

综上所述,就是在归并排序当中 合并两个有序的序列时,计算逆序对的个数;由于排完序是不影响 局部对外界的逆序对数量,所以两个序列是一定有序的。

接下来我们来转换成代码。

题目

给定一个长度为 n n n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i i i 个和第 j j j 个元素,如果满足 i < j i < j i<j a [ i ] > a [ j ] a[i] > a[j] a[i]>a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n n n,表示数列的长度。

第二行包含 n n n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1 ≤ n ≤ 100000 1 \le n \le 100000 1n100000
数列中的元素的取值范围 [ 1 , 1 0 9 ] [1,10^9] [1,109]

输入样例:

6
2 3 4 5 6 1

输出样例:

5

准备阶段:
在这里插入图片描述

相比于归并排序,这里需要多个 计数器。

在这里插入图片描述
相比于归并排序,最后输出cnt即可。

在这里插入图片描述
其中归并排序里面到这里 都与单纯的归并排序一样。

在这里插入图片描述
在合的过程中,只比单纯的归并排序多了一句话。

就是当 j 下标的数字小的时候,此时 i 下标到mid 下标的数字都一定比 刚才j下标的值要大,也就有这么多的逆序对的数量。

最后还需要注意一个问题,就是数据如果太大的话,int cnt 会存不下,所以我们改成 long。

完整代码如下:

#include <iostream>
using namespace std;const int N = 1e5+10;
int n;
int a[N], tem[N];
long cnt;void merge_sort(int q[], int l, int r)
{if (l >= r) return;int mid = (l + r) >> 1;merge_sort(q, l, mid);merge_sort(q, mid + 1, r);int i = l, j = mid + 1, k = 0;while (i <= mid && j <= r){if (q[i] <= q[j]) tem[k++] = q[i++];else{tem[k++] = q[j++];cnt += mid - i + 1;}}while (i <= mid) tem[k++] = q[i++];while (j <= r) tem[k++] = q[j++];for (int i = l, k = 0; i <= r; i++, k++) q[i] = tem[k];
}int main()
{scanf("%d", &n);for (int i = 0; i < n; i++) scanf("%d", &a[i]);merge_sort(a, 0, n - 1);printf("%ld", cnt);return 0;
}

另一种利用函数返回值的方法如下:

#include <iostream>
using namespace std;long long getCount(int q[], int l, int r)
{//递归的结束条件if (l >= r) return 0;int mid = l + r >> 1;long long cnt = 0;cnt += getCount(q, l, mid);cnt += getCount(q, mid+1, r);int temp[r-l+1];//合并int i = l, j = mid+1, k = 0;while (i <= mid && j <= r){if (q[i] <= q[j]) temp[k++] = q[i++];else{temp[k++] = q[j++];cnt += mid - i + 1;}}while (i <= mid) temp[k++] = q[i++];while (j <= r) temp[k++] = q[j++];for (i = l, j = 0; i <= r; i++, j++)q[i] = temp[j];return cnt;
}int main()
{int n;cin >> n;int arr[n];for (int i = 0; i < n; i++) cin >> arr[i];long long ret = getCount(arr, 0, n - 1);cout << ret;return 0;
}

这篇关于归并排序的应用—计算逆序对的个数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071259

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或