使用栈来模拟递归过程

2024-06-18 03:18

本文主要是介绍使用栈来模拟递归过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     使用栈来模拟递归过程

    
.为什么要学习递归与非递归的转换的实现方法
   1)并不是每一门语言都支持递归的
   2)有助于理解递归的本质
   3)有助于理解栈,树等数据结构

二.预先知识

   1)《数据结构》栈,二叉树,树的相关知识

   2)对递归有明确的认识

三.图的深度优先搜索

最近写有关图的算法,首先写的便是基础中的基础,深度优先与广度优先搜索。写完这两个算法的时候,看到了算法导论课后一题,讲的是将深度优先算法使用栈来模拟。

先贴出写下的有关深度优先搜索的代码

 

 

void DFS(MatrixPtr mptr, int d[], int f[],int father[], int color[])
//其中d[]用于记录结点第一次被发现时的递归的深度,f[]用于记录完成深度优先探索时的深度
{int temp = mptr->column,time=0;for(int i=0; i!=temp; i++){color[i] = WHITE;d[i] = 0;f[i] = 0;father[i] = NIT;}for(int i=0; i!=temp; i++){time=0;if(color[i]==WHITE)DFS_VISIT(i,mptr,&time,d,f,father,color);}
}void DFS_VISIT(int i,MatrixPtr mptr, int* time, int d[], int f[], int father[],int color[])
//i表示参与深度优先搜索的标号,返回值表示当前的深度
{d[i] = (*time)++;color[i] = GREY;for(int j=0; j!=mptr->column; j++)if(mptr->matrix[i][j]&&color[j]==WHITE){father[j] = i;DFS_VISIT(j,mptr,time,d,f,father,color);}color[i] = BLACK;f[i] = ++*time;}


其实两个函数里只有DFS_VISIT中存在递归程序。于是开始写,最初写程序,其实写的是非常的混乱的。后来,经过网上开了相应的文章才有所顿悟。尤其是这篇

 

http://www.chinaunix.net/old_jh/23/331522.html如何用栈实现递归与非递归的转换

 

带给我非常大的触动。文中提出  “递归与非递归的转换基于以下的原理:所有的递归程序都可以用树结构表示出来.需要说明的是这个"原理"并没有经过严格的数学证明有三种方法可以遍历树:前序,中序,后序.理解这三种遍历方式的递归和非 递归的表达方式是能够正确实现转换的关键之处,所以我们先来谈谈这个.需要说明的是,这里以特殊的 二叉树来说明,不过大多数情况下二叉树已经够用,而且理解了二叉树的遍历,其它的树遍历方式就不难了

 递归实际上是在执行到递归函数时,将现有的函数中现场保存入栈中,执行完函数后,恢复现场。于是在处理这类问题是,关键便是思考那些数据是必须要存入栈中的,这点非常的重要。(其实什么程序,预先思考都是非常重要的)

我开始观察这段代码,发现DFS_VSIT只是树的后序遍历。同时在执行递归是,必须装入当前的i值与执行到for循环中的哪一步。然后还要装入下一次要完成的i值。

现在给出完成的代码

void DFS_VISIT2(int i,MatrixPtr mptr, int time, int d[], int f[], int father[],int color[])
//i表示参与深度优先搜索的标号,返回值表示当前的深度
{stack<int> stk;stk.push(i);//推入有节点,几乎所有类似的题目都是这么写的stk.push(-1);while(!stk.empty()){int j = stk.top()+1;//由于推入的j还原的之后必然要加1,所以这么处理stk.pop();int i = stk.top();stk.pop();if(j==0){d[i] = time++;color[i] = GREY;}for(; j!=mptr->column; j++)if(mptr->matrix[i][j]&&color[j]==WHITE){father[j] = i;stk.push(i);stk.push(j);stk.push(j);stk.push(-1); //最初是是使用一个if语句来判断是否是返回上一个的递归//状态中,后来想到干脆推入新的新的结点是也推入一个初始的j值             break;}if(j==mptr->column){color[i] = BLACK;f[i] = ++time;}}
}


四.二叉树的遍历算法

为了对上述方法,进行验证,我对二叉树的三种遍历进行了尝试。

typedef struct BitNode 
{unsigned int data;BitNode* lchild,* rchild;
}BitNode,* BitNodePtr,** BitNodePtrPtr;


先序遍历比较的简单只存在访问数据,两个子树指针的入栈

 

void PreTravel2(BitNodePtr bitptr)//使用栈替代递归的算法
{stack<BitNode*> stk;stk.push(bitptr);
while(!stk.empty()){BitNode* tempbitptr = stk.top();stk.pop();if(tempbitptr!=NULL){visit(tempnbitptr);stk.push(tempbitptr->rchild);stk.push(tempbitptr->lchild);}}
}


中序遍历最初的想法是,先将左子树的指针一口气推到底,在访问数据,然后在推入右子树。

 

void InTravel3(BitNodePtr bitptr)
{stack<BitNodePtr> stk;stk.push(bitptr);while(!stk.empty()){BitNodePtr p = stk.top();while (p !=NULL ) 	/* 向左走到尽头 */{stk.push(p->lchild);p=stk.top();}	stk.pop();	 /* 空指针退栈 */	if (!stk.empty()) {p = stk.top();	            stk.pop();		    visit(p);	 /* 访问当前结点 */		    stk.push(p->rchild);	/* 向右走一步 */		}}
}


在这里巧妙地利用了空指针与退栈操作。

不过我在写这段代码的,时候出现了一些问题那就是无法有效的判断是否已经完成了左子树的访问。为此依据他人的写法完成后,在我又另外写了一段代码,来弥补上次的失误。

 

void InTravel2(BitNodePtr bitptr)
{stack<Node> stk;Node d = {bitptr,true};stk.push(d);while(!stk.empty()){BitNodePtr temptr = stk.top().p;Nodeptr top = &stk.top();while(stk.top().flag&&temptr!=NULL&&temptr->lchild!=NULL)//推入所有的左子树内容{temptr = temptr->lchild;Node d = {temptr,true};stk.push(d);}top->flag = false;//关键的地方temptr = stk.top().p;stk.pop();if(temptr!=NULL){Visit(temptr);Node d = {temptr->rchild,true};stk.push(d);}}
}


在标有注释的地方将已经推入所有的左子树的指针的标志记为false,下次在访问的时候就不会在进行推左子树的操作。

为什么这么做呢,因为在思考中序遍历的操作是发现恢复现场的时候,实际上是恢复到了推完所有的左子树的瞬间。因此在这里写的时候,理由一个flag来判断是否处于需要左子树的状态。

 

 

后序遍历

与前面的中序遍历相似,在这里有一个flag,来判断是否处于需要推入子树的阶段。

在这里解释一下,在后序遍历的时候,先访问左右的子树,再访问自身,恢复现场时,是已经访问完左右子树的状态。同时,如果是叶节点的话直接访问。

void AfterTravel1(BitNodePtr bitptr)
{stack<Node> stk;Node d = {bitptr,false};stk.push(d);while(!stk.empty()){Node d = stk.top();stk.pop();if(d.flag||NULL==d.p->lchild&&NULL==d.p->rchild){visit(d.p);}else{Node e = {d.p,true};stk.push(e);if(d.p->rchild!=NULL){Node e = {d.p->rchild,false};stk.push(e);}if(d.p->lchild!=NULL){Node e = {d.p->lchild,false};stk.push(e);}}}
}


五.最后的总结

多思考,多尝试。在写之前,不妨在纸上模拟一下状态。

这篇关于使用栈来模拟递归过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071162

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(