构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程

本文主要是介绍构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用假设性文档嵌入(HyDE)改善文档索引

摘要

本文介绍了如何使用假设性文档嵌入(Hypothetical Document Embeddings,简称HyDE),这是根据一篇论文中描述的技术。HyDE 是一种嵌入技术,它接收查询,生成一个假设性的答案,然后嵌入该生成的文档,并将其作为最终示例使用。

代码及注释

from langchain.chains import HypotheticalDocumentEmbedder, LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI, OpenAIEmbeddings# 初始化基础嵌入模型
base_embeddings = OpenAIEmbeddings()
# 初始化语言模型
llm = OpenAI()# 使用web_search提示加载HyDE
embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")# 现在我们可以像使用任何嵌入类一样使用它
result = embeddings.embed_query("泰姬陵在哪里?")

多生成文档

我们也可以生成多个文档,然后组合这些文档的嵌入。默认情况下,我们通过取平均值来组合它们。我们可以通过改变生成文档的LLM来返回多个结果。

# 初始化返回多个结果的语言模型
multi_llm = OpenAI(n=4, best_of=4)# 使用多生成语言模型加载HyDE
embeddings = HypotheticalDocumentEmbedder.from_llm(multi_llm, base_embeddings, "web_search"
)# 嵌入查询
result = embeddings.embed_query("泰姬陵在哪里?")

使用自定义提示

除了使用预配置的提示外,我们也可以轻松构建自己的提示,并在生成文档的LLMChain中使用它们。如果我们知道查询将涉及的领域,这将非常有用,因为我们可以调整提示以生成更类似于该领域的文本。

以下示例中,我们将提示条件设置为生成有关国情咨文的文本。

# 定义自定义提示模板
prompt_template = """请回答用户关于最近一次国情咨文的问题
问题:{question}
答案:"""
# 创建提示模板对象
prompt = PromptTemplate(input_variables=["question"], template=prompt_template)
# 初始化使用自定义提示的LLMChain
llm_chain = LLMChain(llm=llm, prompt=prompt)# 使用自定义提示加载HyDE
embeddings = HypotheticalDocumentEmbedder(llm_chain=llm_chain, base_embeddings=base_embeddings
)# 嵌入查询
result = embeddings.embed_query("总统在谈到Ketanji Brown Jackson时说了什么?"
)

使用HyDE

现在我们有了HyDE,我们可以像使用其他任何嵌入类一样使用它!以下是使用它在国情咨文示例中查找相似段落的方法。

from langchain_community.vectorstores import Chroma
from langchain_text_splitters import CharacterTextSplitter# 读取国情咨文文本
with open("../../state_of_the_union.txt") as f:state_of_the_union = f.read()
# 初始化文本分割器
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# 分割文本
texts = text_splitter.split_text(state_of_the_union)# 使用Chroma从分割后的文本和嵌入创建文档搜索引擎
docsearch = Chroma.from_texts(texts, embeddings)# 定义查询
query = "总统在谈到Ketanji Brown Jackson时说了什么?"
# 执行相似性搜索
docs = docsearch.similarity_search(query)# 打印搜索结果
print(docs[0].page_content)

总结

本文详细介绍了如何使用假设性文档嵌入(HyDE)技术来改善文档索引。通过提供基础嵌入模型和生成文档的语言模型链(LLMChain),我们可以生成假设性答案并将其嵌入作为最终示例。此外,我们还探讨了如何使用自定义提示来生成特定领域的文本,以及如何将HyDE与其他工具结合使用,如Chroma和CharacterTextSplitter,以实现文档的高效索引和搜索。

扩展知识

  • HyDE (Hypothetical Document Embeddings):一种文档嵌入技术,通过生成假设性答案来改善文档索引和搜索。
  • LLMChain:用于生成文档的语言模型链,可以与HyDE结合使用。
  • OpenAIEmbeddings:OpenAI 提供的嵌入模型,用于生成文档嵌入。
  • PromptTemplate:用于定义和生成自定义提示的模板。
  • Chroma:一个向量存储库,用于文档搜索和相似性搜索。
  • CharacterTextSplitter:用于将长文本分割成更小的块,以便于处理和索引。

这篇关于构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070368

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来