3行代码实现 Python 并行处理,速度提高6倍!

2024-06-17 16:08

本文主要是介绍3行代码实现 Python 并行处理,速度提高6倍!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源 | towardsdatascience.com

编译 | 数说君

出品 | 数说工作室

原标题:Here’s how you can get a 2–6x speed-up on your data pre-processing with Python

最近在 Towards Data Science 上看到一篇文章,如何用 Python 进行并行处理,觉得非常有帮助,因此介绍给大家,用我的风格对文章做了编译。


数据的预处理,是机器学习非常重要的一环。尽管 Python 提供了很多让人欲罢不能的库,但数据量一大,就不是那么回事了。

面对着海量的数据,再狂拽炫酷的计算都苍白无力,每一个简单的计算都要不断告诉自己:

Python,你算的累不累,

饿不饿?

渴不渴?

会不会让我等待太久,

是否可以快一点。

一方面是低效率,另一方面呢,却是电脑资源的闲置,给你们算笔账:

现在我们做机器学习的个人电脑,大部分都是双CPU核的,有的是4核甚至6核(intel i7)。而 Python 默认情况下是用单核进行做数据处理,这就意味着,Python 处理数据时,电脑有50%的处理能力被闲置了!

还好,Python 有一个隐藏 “皮肤”,可以对核资源的利用率进行加成!这个隐藏“皮肤” 就是 concurrent.futures 模块,能够帮助我们充分利用所有CPU内核。

下面就举个例子进行说明:

在图像处理领域,我们有时候要处理海量的图像数据,比如几百万张照片进行尺寸统一化调整,然后扔到神经网络中进行训练。这时候 concurrent.futures 模块可以帮我们缩短数倍的时间。

为了便于比较,这里拿1000张照片做例子,我们需要:把这1000张照片统一调整成 600x600 的尺寸:

(1)一般的方法

上面是最常见的数据处理方法:

① 准备好要处理的原始文件,比如几百万个txt、jpg等;

② 用for循环一个一个的处理,每一个循环里面运行一次预处理,这里的预处理就是 imread() 和 resize(),即读入每一张图片,重新调整一下大小。

1000张照片的话,大概要花费多久呢?我们来跑一下时间:

time python standard_res_conversion.py

在作者的 i7-8700k 6核CPU处理器上,一共大概7.9864秒。才1000张照片,花了将近8秒,你可以闭上眼感受一下,互联网有一个「八秒定律」,即指用户访问一个网站时,如果等待网页打开的时间超过8秒,会有超过70%的用户放弃等待。

(2)快的方法

concurrent.futures 模块能够利用并行处理来帮我们加速,什么是并行处理,举个例子:

假设我们要把1000个钉子钉入一块木头里,钉一次要1秒,那么1000次就要1000秒。 但假如我们让4个人同时来钉,分摊成4个人,最快只要250秒。这就是并行处理

这1000张照片,也可以分成多个进程来处理。用 concurrent.futures 库只要多3行代码:

代码中,首先把具体的处理过程打包成函数 load_and_resize(),然后用框出来的3行代码,即可实现多线程处理:

with concurrent.futures.ProcessPoolExecutor() as executor:

这句意味着你有多少CPU核心,就启动多少Python进程,这里作者的电脑是6个核,就同时启动6个项。

image_files = glob.glob(".*jpg")

读入原始数据。

executor.map(load_and_resize, image_file)

这个是实际的处理语句,第一个参数是处理函数,第二个参数是原始数据。这个语句意味着,用6个进程,来并行对 image_file 文件进行 load_and_resize 处理。

再跑一下时间:

time python fast_res_conversion.py

这次只需要1.14265秒,快了几乎6倍!

(3)例外情况

由于并行的处理是没有顺序的,因此如果你需要的结果是按照特定顺序排列的,那么这种方法不是很适用。

另外就是数据类型必须要是Python能够去pickle的,比如:

  • None, True, 及 False
  • 整数,浮点数,复数
  • 字符串,字节,字节数组
  • 仅包含可选对象的元组,列表,集合和词典
  • 在模块的顶层定义的函数(用 def 定义,而不是lambda)
  • 在模块顶层定义的内置函数
  • 在模块顶层定义的类
  • 类的实例,这些类的__dict__或调用__getstate __()的结果是可选择的

这篇关于3行代码实现 Python 并行处理,速度提高6倍!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069914

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服