视听分割相关论文阅读

2024-06-17 15:36

本文主要是介绍视听分割相关论文阅读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. End-to-End Referring Video Object Segmentation with Multimodal Transformers

RVOS(视频中的参考对象分割)比RIS(图像中的参考对象分割)要困难得多,因为指代动作的文本表达通常无法从单个静态帧中正确推断出来。此外,与基于图像的方法不同,RVOS方法可能需要在多帧中建立被参考对象的数据关联(跟踪),以应对遮挡或运动模糊等干扰。

本文使用标准的基于Transformer的文本编码器从文本查询中提取语言特征,并使用时空编码器从视频帧中提取视觉特征。然后,将这些特征传递到多模态Transformer中,该Transformer输出多个对象预测序列(模型生成一系列预测结果,每个结果对应于视频中的一个对象实例,并且在整个视频帧序列中跟踪这些对象。)。接下来,为了确定哪个预测序列最符合被指对象,我们计算每个序列的文本参考评分。为此,我们提出了一种时间段投票方案,使我们的模型在做出决策时能够专注于视频中更相关的部分。(在视频的不同时间段计算相似度评分,然后根据这些评分对整个序列进行投票或加权求和,聚焦于视频中最相关的部分。)

2. Tracking Anything with Decoupled Video Segmentation

视频分割有两种:端到端的视频分割基于跟踪的逐帧分割

端到端的视频分割方法直接处理整个视频序列,以一次性生成所有帧的分割结果。

基于跟踪的逐帧分割方法首先对每个视频帧进行单独分割,然后通过目标跟踪算法在帧之间关联分割结果。这类方法通常将视频分割问题分解为图像分割和目标跟踪两个步骤。

这篇关于视听分割相关论文阅读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069838

相关文章

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

log4j2相关配置说明以及${sys:catalina.home}应用

${sys:catalina.home} 等价于 System.getProperty("catalina.home") 就是Tomcat的根目录:  C:\apache-tomcat-7.0.77 <PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" /> 2017-08-10

Node Linux相关安装

下载经编译好的文件cd /optwget https://nodejs.org/dist/v10.15.3/node-v10.15.3-linux-x64.tar.gztar -xvf node-v10.15.3-linux-x64.tar.gzln -s /opt/node-v10.15.3-linux-x64/bin/npm /usr/local/bin/ln -s /opt/nod

git ssh key相关

step1、进入.ssh文件夹   (windows下 下载git客户端)   cd ~/.ssh(windows mkdir ~/.ssh) step2、配置name和email git config --global user.name "你的名称"git config --global user.email "你的邮箱" step3、生成key ssh-keygen

zookeeper相关面试题

zk的数据同步原理?zk的集群会出现脑裂的问题吗?zk的watch机制实现原理?zk是如何保证一致性的?zk的快速选举leader原理?zk的典型应用场景zk中一个客户端修改了数据之后,其他客户端能够马上获取到最新的数据吗?zk对事物的支持? 1. zk的数据同步原理? zk的数据同步过程中,通过以下三个参数来选择对应的数据同步方式 peerLastZxid:Learner服务器(Follo