安全智能体的前沿技术研究与实践

2024-06-17 06:04

本文主要是介绍安全智能体的前沿技术研究与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全底层技术演进经历了以下几个阶段:\n\n1. 规则驱动:在早期,安全技术主要依赖于人工编写的规则进行静态和动态分析,如基线核查规则、应用漏洞规则等。这种方式尽管在某些特定场景下有效,但面临着规则更新滞后和适应性差的问题。\n\n2. 大数据驱动、深度学习、机器学习:随着算力和存储设备的发展,安全技术开始利用机器学习、大数据分析,通过统计模型和威胁情报,实现更为复杂的威胁检测和响应。然而,这种方法依然面临着误报率高、漏报率高等挑战。\n\n3. 安全智能体&安全AGI:大模型技术给安全带来的核心变革在于,补充语义分析能力。这一能力不仅突破了传统基于规则的安全方案的效果瓶颈,还让智能体方案具备了像人类一样的分析学习能力。这些将从根本上重塑现在安全团队的工作范式,实现进一步安全自动化。\n\n尽管目前大模型在安全场景的落地依旧面临许多难点与挑战,但人工智能技术与网络安全的深度融合已成为不可逆的行业趋势。在此背景下,沈凯文博士从大模型落地的痛点与云起无垠的安全智能体实践等方面为我们分享了人工智能时代安全智能体的前沿技术研究与实践。\n\n智能体方案解决大模型落地难题\n目前,幻觉和输出不稳定是大模型在安全场景落地时面临的两大障碍。幻觉指的是模型生成的内容看似合理但实际上是错误或虚构的情况。例如,当用户输入一个CVE漏洞解释任务时,由于知识缺失,大模型可能会编造一个不存在的漏洞并输出,从而误导用户。输出不稳定是指在相同或相似的输入下,大模型的内容输出结果可能存在显著差异。例如,应用大模型处理代码修复任务,即使使用同样的提示词生成10次结果,输出的代码也可能各不相同,往往其中只有2-3次输出是可用的。在对准确率要求极高的网络安全领域,幻觉和输出不稳定给大模型的应用落地带来了巨大的挑战。\n\n为了解决幻觉和输出不稳定的问题,沈凯文博士认为智能体是将大模型落地的最佳实践应用方案。其中通过规划+工具能力可以有效提升输出的稳定性,而利用知识引擎则可以一定程度上解决大模型因为知识缺失而产生的幻觉问题。比如上述CVE漏洞的例子,直接询问GPT-4难以得到较好的反馈,通过让大模型与知识引擎协同,并利用检索增强生成(RAG)的方式,就能让大模型更精准地向用户输出CVE漏洞信息,指导用户如何进行修复。

这篇关于安全智能体的前沿技术研究与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068652

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提