数字图像处理-形态学操作

2024-06-17 01:18

本文主要是介绍数字图像处理-形态学操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【转载】:http://www.cnblogs.com/tornadomeet/archive/2012/03/20/2408086.html
Matlab 形态学图像处理(原文作者很是细心,感谢!)

%% 第9章 形态学处理%% imdilate膨胀
clc
clearA1=imread('.\images\dipum_images_ch09\Fig0906(a)(broken-text).tif');
info=imfinfo('.\images\dipum_images_ch09\Fig0906(a)(broken-text).tif')
B=[0 1 01 1 10 1 0];
A2=imdilate(A1,B);%图像A1被结构元素B膨胀
A3=imdilate(A2,B);
A4=imdilate(A3,B);subplot(221),imshow(A1);
title('imdilate膨胀原始图像');subplot(222),imshow(A2);
title('使用B后1次膨胀后的图像');subplot(223),imshow(A3);
title('使用B后2次膨胀后的图像');subplot(224),imshow(A4);
title('使用B后3次膨胀后的图像');27%imdilate图像膨胀处理过程运行结果如下:%% imerode腐蚀
clc
clear
A1=imread('.\images\dipum_images_ch09\Fig0908(a)(wirebond-mask).tif');
subplot(221),imshow(A1);
title('腐蚀原始图像');%strel函数的功能是运用各种形状和大小构造结构元素
se1=strel('disk',5);%这里是创建一个半径为5的平坦型圆盘结构元素
A2=imerode(A1,se1);
subplot(222),imshow(A2);
title('使用结构原始disk(5)腐蚀后的图像');se2=strel('disk',10);
A3=imerode(A1,se2);
subplot(223),imshow(A3);
title('使用结构原始disk(10)腐蚀后的图像');se3=strel('disk',20);
A4=imerode(A1,se3);
subplot(224),imshow(A4);
title('使用结构原始disk(20)腐蚀后的图像');
%图像腐蚀处理过程运行结果如下:%% 开运算和闭运算
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0910(a)(shapes).tif');
%se=strel('square',5');%方型结构元素
se=strel('disk',5');%圆盘型结构元素
imshow(f);%原图像
title('开闭运算原始图像')61%运行结果如下:%开运算数学上是先腐蚀后膨胀的结果
%开运算的物理结果为完全删除了不能包含结构元素的对象区域,平滑
%了对象的轮廓,断开了狭窄的连接,去掉了细小的突出部分
fo=imopen(f,se);%直接开运算
figure,subplot(221),imshow(fo);
title('直接开运算');%闭运算在数学上是先膨胀再腐蚀的结果
%闭运算的物理结果也是会平滑对象的轮廓,但是与开运算不同的是,闭运算
%一般会将狭窄的缺口连接起来形成细长的弯口,并填充比结构元素小的洞
fc=imclose(f,se);%直接闭运算
subplot(222),imshow(fc);
title('直接闭运算');foc=imclose(fo,se);%先开后闭运算
subplot(223),imshow(foc);
title('先开后闭运算');fco=imopen(fc,se);%先闭后开运算
subplot(224),imshow(fco);
title('先闭后开运算');84%开闭运算结果如下:%先膨胀再腐蚀
fse=imdilate(f,se);%膨胀%gcf为得到当前图像的句柄,当前图像是指例如PLOT,TITLE,SURF等
%get函数为得到物体的属性,get(0,'screensize')为返回所有物体screensize属性值
%set函数为设置物体的属性
figure,set(gcf,'outerposition',get(0,'screensize'));%具体目的是设置当前窗口的大小
subplot(211),imshow(fse);
title('使用disk(5)先膨胀后的图像');fes=imerode(fse,se);
subplot(212),imshow(fes);
title('使用disk(5)先膨胀再腐蚀后的图像');99%先膨胀后腐蚀图像如下:%先腐蚀再膨胀
fse=imerode(f,se);
figure,set(gcf,'outerposition',get(0,'screensize'))
subplot(211),imshow(fse);
title('使用disk(5)先腐蚀后的图像');fes=imdilate(fse,se);
subplot(212),imshow(fes);
title('使用disk(5)先腐蚀再膨胀后的图像');
110%先腐蚀后膨胀的图像如下:%% imopen imclose在指纹上的应用
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0911(a)(noisy-fingerprint).tif');
se=strel('square',3);%边长为3的方形结构元素
subplot(121),imshow(f);
title('指纹原始图像');A=imerode(f,se);%腐蚀
subplot(122),imshow(A);
title('腐蚀后的指纹原始图像');
123%指纹原始图像和腐蚀后的图像结果如下:fo=imopen(f,se);
figure,subplot(221),imshow(fo);
title('使用square(3)开操作后的图像');fc=imclose(f,se);
subplot(222),imshow(fc);
title('使用square闭操作后的图像');foc=imclose(fo,se);
subplot(223),imshow(foc);
title('使用square(3)先开后闭操作后的图像')fco=imopen(fc,se);
subplot(224),imshow(fco);
title('使用square(3)先闭后开操作后的图像');
140%指纹图像开闭操作过程结果如下:%% bwhitmiss击中或击不中变换
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0913(a)(small-squares).tif');
imshow(f);
title('击中或不击中原始图像');
148%击中或不击中原始图像显示结果如下:B1=strel([0 0 0;0 1 1;0 1 0]);%击中:要求击中所有1的位置
B2=strel([1 1 1;1 0 0;1 0 0]);%击不中,要求击不中所有1的位置
B3=strel([0 1 0;1 1 1;0 1 0]);%击中
B4=strel([1 0 1;0 0 0;0 0 0]);%击不中
B5=strel([0 0 0;0 1 0;0 0 0]);%击中
B6=strel([1 1 1;1 0 0;1 0 0]);%击不中g=imerode(f,B1)&imerode(~f,B2)%利用定义来实现击中或击不中
figure,subplot(221),imshow(g);
title('定义实现组1击中击不中图像');g1=bwhitmiss(f,B1,B2);
subplot(222),imshow(g1);
title('结构数组1击中击不中后的图像');g2=bwhitmiss(f,B3,B4);
subplot(223),imshow(g2);
title('结构数组2击中击不中的图像');g3=bwhitmiss(f,B5,B6);
subplot(224),imshow(g3);
title('结构数组3击中击不中的图像');
172%击中击不中变换后图像如下:%%makelut
clc
clearf=inline('sum(x(:))>=3');%inline是用来定义局部函数的
lut2=makelut(f,2)%为函数f构造一个接收2*2矩阵的查找表
lut3=makelut(f,3)%% Conway生命游戏
clc
clear
lut=makelut(@conwaylaws,3);
bw1=  [0     0     0     0     0     0     0     0     0     00     0     0     0     0     0     0     0     0     00     0     0     1     0     0     1     0     0     00     0     0     1     1     1     1     0     0     00     0     1     0     0     0     0     1     0     00     0     1     0     1     1     0     1     0     00     0     1     0     0     0     0     1     0     00     0     0     1     1     1     1     0     0     00     0     0     0     0     0     0     0     0     00     0     0     0     0     0     0     0     0     0  ];
subplot(221),imshow(bw1,'InitialMagnification','fit');
title('Generation 1');bw2=applylut(bw1,lut);
subplot(222),imshow(bw2,'InitialMagnification','fit'),
title('Generation 2');bw3=applylut(bw2,lut);
subplot(223),imshow(bw3,'InitialMagnification','fit');
title('Generation 3');temp=bw1;
for i=2:100bw100=applylut(temp,lut);temp=bw100;
end
subplot(224),imshow(bw100,'InitialMagnification','fit')
title('Generation 100');
214%显示Generation结果如下:%% getsequence
clc
clear
se=strel('diamond',5)
decomp=getsequence(se)%getsequence函数为得到分解的strel序列
decomp(1)
decomp(2)%% endpoints
clc
clearf1=imread('.\images\dipum_images_ch09\Fig0914(a)(bone-skel).tif');
subplot(121),imshow(f1);
title('原始形态骨架图像');g1=endpoints(f1);
%set(gcf,'outerposition',get(0,'screensize'));%运行完后自动生成最大的窗口
subplot(122),imshow(g1);
title('骨架图像的端点图像');
%骨架头像端点检测头像如下:f2=imread('.\images\dipum_images_ch09\Fig0916(a)(bone).tif');
figure,subplot(121),imshow(f2);
title('原始骨头图像');g2=endpoints(f2);
subplot(122),imshow(g2);
title('骨头图像端点头像');%结果是没有端点
245%骨头头像端点检测图像如下:%% bwmorph组合常见形态学之细化
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0911(a)(noisy-fingerprint).tif');
subplot(221),imshow(f);
title('指纹图像细化原图');g1=bwmorph(f,'thin',1);
subplot(222),imshow(g1);
title('指纹图像细化原图');g2=bwmorph(f,'thin',2);
subplot(223),imshow(g2);
title('指纹图像细化原图');g3=bwmorph(f,'thin',Inf);
subplot(224),imshow(g3);
title('指纹图像细化原图');
265%指纹图像细化过程显示如下:%% bwmorph组合常见形态学之骨骼化
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0911(a)(noisy-fingerprint).tif');
subplot(131),imshow(f);
title('指纹图像骨骼化原图');fs=bwmorph(f,'skel',Inf);
subplot(132),imshow(fs);
title('指纹图像骨骼化');for k=1:5fs=fs&~endpoints(fs);
end
subplot(133),imshow(fs);
title('指纹图像修剪后骨骼话');
283%指纹图像骨骼化过程显示:%% 使用函数bwlabel标注连通分量
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0917(a)(ten-objects).tif');
imshow(f),title('标注连通分量原始图像');
290%其结果显示如下:[L,n]=bwlabel(f);%L为标记矩阵,n为找到连接分量的总数
[r,c]=find(L==3);%返回第3个对象所有像素的行索引和列索引rbar=mean(r);
cbar=mean(c);figure,imshow(f)
hold on%保持当前图像使其不被刷新
for k=1:n[r,c]=find(L==k);rbar=mean(r);cbar=mean(c);plot(cbar,rbar,'Marker','o','MarkerEdgeColor','k',...'MarkerFaceColor','k','MarkerSize',10);%这个plot函数用法不是很熟悉plot(cbar,rbar,'Marker','*','MarkerFaceColor','w');%其中的marker为标记
end
title('标记所有对象质心后的图像');%% 由重构做开运算
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0922(a)(book-text).tif');
subplot(321),imshow(f);
title('重构原始图像');fe=imerode(f,ones(51,1));%竖线腐蚀
subplot(322),imshow(fe);
title('使用竖线腐蚀后的结果');fo=imopen(f,ones(51,1));%竖线做开运算
subplot(323),imshow(fo);
title('使用竖线做开运算结果');fobr=imreconstruct(fe,f);%fe做标记
subplot(324),imshow(fobr);
title('使用竖线做重构开运算');ff=imfill(f,'holes');%对f进行孔洞填充
subplot(325),imshow(ff);
title('对f填充孔洞后的图像');fc=imclearborder(f,8);%清除边界,28邻接
subplot(326),imshow(fc);
title('对f清除边界后的图像');
336%图像重构过程显示如下:%% 使用顶帽变换和底帽变换
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0926(a)(rice).tif');
subplot(221),imshow(f);
title('顶帽底帽变换原始图像');se=strel('disk',10);%产生结构元素
%顶帽变换是指原始图像减去其开运算的图像
%而开运算可用于补偿不均匀的背景亮度,所以用一个大的结构元素做开运算后
%然后用原图像减去这个开运算,就得到了背景均衡的图像,这也叫做是图像的顶帽运算
f1=imtophat(f,se);%使用顶帽变换
subplot(222),imshow(f1);
title('使用顶帽变换后的图像');%底帽变换是原始图像减去其闭运算后的图像
f2=imbothat(imcomplement(f),se);%使用底帽变换,为什么原图像要求补呢?
%f2=imbothat(f,se);%使用底帽变换
subplot(223),imshow(f2);
title('使用底帽变换后的图像');%顶帽变换和底帽变换联合起来用,用于增加对比度
f3=imsubtract(imadd(f,imtophat(f,se)),imbothat(f,se));%里面参数好像不合理?
subplot(224),imshow(f3);
title('使用顶帽底帽联合变换后图像');
363%顶帽底帽变换过程图像如下:%%使用开运算和闭运算做形态学平滑
%由于开运算可以除去比结构元素更小的明亮细节,闭运算可以除去比结构元素更小的暗色细节
%所以它们经常组合起来一起进行平滑图像并去除噪声
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0925(a)(dowels).tif');
subplot(221),imshow(f);
title('木钉图像原图');se=strel('disk',5);%disk其实就是一个八边形
fo=imopen(f,se);%经过开运算
subplot(222),imshow(f);
title('使用半径5的disk开运算后的图像');foc=imclose(fo,se);
subplot(223),imshow(foc);
title('先开后闭的图像');fasf=f;
for i=2:5se=strel('disk',i);fasf=imclose(imopen(fasf,se),se);
end
subplot(224),imshow(fasf);
title('使用开闭交替滤波后图像');
390%使用开运算和闭运算做形态学平滑结果如下:%% 颗粒分析
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0925(a)(dowels).tif');sumpixels=zeros(1,36);
for k=0:35se=strel('disk',k);fo=imopen(f,se);sumpixels(k+1)=sum(fo(:));
end%可以看到,连续开运算之间的表面积会减少
plot(0:35,sumpixels),xlabel('k'),ylabel('surface area');
title('表面积和结构元素半径之间的关系');
407%其运算结果如下:   figure,plot(-diff(sumpixels));%diff()函数为差分或者近似倒数,即相邻2个之间的差值
xlabel('k'),ylabel('surface area reduction');
title('减少的表面积和结构元素半径之间的关系');
412%其运算结果如下:%% 使用重构删除复杂图像的背景
clc
clear
f=imread('.\images\dipum_images_ch09\Fig0930(a)(calculator).tif');
subplot(221),imshow(f);
title('灰度级重构原图像');f_obr=imreconstruct(imerode(f,ones(1,71)),f);
subplot(222),imshow(f_obr);
title('经开运算重构图');f_o=imopen(f,ones(1,71));
subplot(223),imshow(f_o);
title('经开运算后图');f_thr=imsubtract(f,f_obr);
subplot(224),imshow(f_thr);
title('顶帽运算重构图')
432%使用重构删除复杂图像的背景1:f_th=imsubtract(f,f_o)
figure,subplot(221),imshow(f_th);
title('经顶帽运算图');g_obr=imreconstruct(imerode(f_thr,ones(1,11)),f_thr);
subplot(222),imshow(g_obr);
title('用水平线对f_thr经开运算后重构图');g_obrd=imdilate(g_obr,ones(1,2));
subplot(223),imshow(g_obrd);
title('使用水平线对上图进行膨胀');f2=imreconstruct(min(g_obrd,f_thr),f_thr);
subplot(224),imshow(f2);
title('最后的重构结果');
449%使用重构删除复杂图像的背景2:

这篇关于数字图像处理-形态学操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068086

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允