USB转I2C转SPI芯片CH341与CH347比较

2024-06-16 21:36
文章标签 比较 芯片 usb spi i2c ch341 ch347

本文主要是介绍USB转I2C转SPI芯片CH341与CH347比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 芯片中文资料:

USB转I2C转SPI芯片CH341

高速USB转接芯片CH347转9M双串口转I2C转SPI转JTAG转SWD

USB2.0高速转接芯片CH347应用开发手册

2. CH341与CH347比较:

类别CH341CH347备注
串口速度2M9MCH347的串口速度更快
设置CH341的I2C或SPI不能与串口同时输出CH347可以在支持串口的同时使用I2C或SPI
串口数量12CH347支持2个高速串口
转换接口异步串口/RS232/RS485/RS422、转换并口打印机为 USB 打印机、EPP 并口和 MEM 并口、常用的 2 线和 4 线同步串口0#异步串口 UART/RS232/RS485、1#异步串口 UART/RS232/RS485、2 线 IIC 和 4 线 SPI 同步串口、JTAG 接口/SWD 接口CH347增加了JTAG 接口/SWD 接口
I/O 独立供电不支持支持支持 3.3V、2.5V、1.8V 电源电压
封装SOP-28、SSOP-20、QFN28TSSOP-20 、 QFN28
参考价格约4元约9元

3. 外观与丝印

CH341T外观与丝印

CH341T外观与丝印

CH347T外观与丝印

CH347T外观与丝印

4. 引脚定义与封装

4.1 CH341引脚定义

CH341引脚定义

CH341引脚定义

4.2 CH341封装类型

封装形式塑体宽度引脚间距封装说明订货型号
SOP-287.62mm1.27mm标准的 28 脚贴片CH341B
SOP-287.62mm1.27mm标准的 28 脚贴片CH341A
QFN28_4X44*4mm0.4mm方形无引线 28 脚CH341F
SSOP-205.30mm0.65mm缩小型 20 脚贴片CH341C
SSOP-205.30mm0.65mm缩小型 20 脚贴片CH341T
SSOP-205.30mm0.65mm缩小型 20 脚贴片CH341H

注:CH341C/CH341T 仅用于 USB 转串口或者 USB 转 2 线接口
CH341H 仅用于 USB 转 4 线接口等(例如 SPI),新设计不推荐使用,建议用 CH341B 或 CH341F。
CH341A、CH341T 和 CH341H 必须外接晶体及振荡电容。
CH341B、CH341F 和 CH341C 既可以选择外接晶体及电容,也可以选择不外接而直接使用内置时钟。

4.3 CH347引脚定义

CH347引脚定义

CH347引脚定义

4.4 CH347封装类型

封装形式塑体宽度引脚间距封装说明订货型号
QFN28_4X44*4mm0.4mm四边无引线 28 脚CH347F
TSSOP-204.4mm0.65mm薄小型 20 脚贴片CH347T

注:CH347 的 USB 收发器按 USB2.0 全内置设计,UD+和 UD-引脚不能串接电阻,否则影响信号质量。
CH347F 的底板是 0#引脚 GND,是可选但建议的连接;其它 GND 是必要连接。

5 CH341引脚:

5.1. 一般说明

CH341 的具体功能由复位后的功能配置决定,同一引脚在不同功能下的定义可能不同。
CH341C/T 和 CH341H 采用 SSOP-20 封装,是 CH341B/A/F 的简装版,三者相同名称的引脚具有相同的功能。CH341C/T 和 CH341H 的多个 VCC 引脚并联后作为 VCC,多个 GND 引脚并联后作为 GND。

5.2. 标准的公共引脚

CH341B、CH341A、CH341F 引脚号CH341C、CH341T 引脚号CH341H引脚号引脚名称类型引脚说明(EB)
2820,1320VCC电源正电源输入端,需要外接 0.1uF 电源退耦电容
12,011,127,18GND电源公共接地端,直接连到 USB 总线的地线
964V3电源在 3.3V 电源电压时连接 VCC 输入外部电源,在 5V 电源电压时外接容量为 0.01uF~0.1uF 退耦电容
1398XI输入晶体振荡的输入端,需要外接晶体及振荡电容。对于 CH341B/F/C 的内置时钟模式,XI 应该接 GND
14109XO输出晶体振荡的反相输出端,需要外接晶体及振荡电容。对于 CH341B/F/C 的内置时钟模式,XO 应该悬空
1075UD+USB 信号直接连到 USB 总线的 D+数据线
1186UD-USB 信号直接连到 USB 总线的 D-数据线
111ACT#输出USB 设备配置完成状态输出,低电平有效
22RSTI输入外部复位输入,高电平有效,内置下拉电阻
2416SCL开漏输出芯片功能配置输出,内置上拉电阻,可以接串行 EEPROM 配置芯片的 SCL 引脚
2315SDA开漏输出及输入芯片功能配置输入,内置上拉电阻,可以接串行 EEPROM 配置芯片的 SDA 引脚

5.3. 异步串口方式的引脚

341B/A/F引脚号341C/T引脚号引脚名称类型引脚说明
53TXD输出串行数据输出
64RXD输入串行数据输入,内置上拉电阻
2719TEN#输入串口发送使能,低电平有效,内置上拉电阻
2517RDY#输出串口接收就绪,低电平有效
2618TNOW输出串口发送正在进行的状态指示,高电平有效
42ROV#三态输出串口接收缓冲区溢出,低电平有效
15CTS#输入MODEM 联络输入信号,清除发送,低有效
16DSR#输入MODEM 联络输入信号,数据装置就绪,低有效
17RI#输入MODEM 联络输入信号,振铃指示,低有效
18DCD#输入MODEM 联络输入信号,载波检测,低有效
20DTR#三态输出MODEM 联络输出信号,数据终端就绪,低有效
21RTS#三态输出MODEM 联络输出信号,请求发送,低有效
19OUT#三态输出自定义通用输出信号,低电平有效
75INT#输入自定义中断请求,上升沿有效,内置上拉电阻
8IN3输入自定义通用输入信号,建议悬空不用
3IN7输入自定义通用输入信号,建议悬空不用
2214SLP#三态输出睡眠状态输出信号,低电平有效

5.4. 打印口方式的引脚

341B/A/F引脚号引脚名称类型引脚说明
22~15D7~D0三态输出8 位并行数据输出,接 DATA7~DATA0
25STB#输出数据选通输出,低电平有效,接 STROBE
4AFD#输出自动换行输出,低电平有效,接 AUTO-FEED
26INI#输出初始化打印机,低电平有效,接 INIT
3SIN#三态输出选中打印机,低电平有效,接 SELECT-IN
5ERR#输入打印机出错,低有效,内置上拉,接 ERROR 或 FAULT
8SLCT输入打印机联机,高有效,内置上拉,接 SELECT 或 SLCT
6PEMP输入打印机缺纸,高有效,内置上拉,接 PEMPTY 或 PERROR
7ACK#输入打印机数据接收应答,上升沿有效,内置上拉,接 ACK
27BUSY输入打印机正忙,高有效,内置上拉,接 BUSY

5.5. 并口方式的引脚

341B/A/F 引脚号引脚名称类型引脚说明
22~15D7~D0双向三态8 位双向数据总线,内置上拉电阻
25WR#输出EPP 方式:写操作指示,低电平写,高电平读;MEM 方式:写选通输出 WR#,低电平有效
4DS#输出EPP 方式:数据操作选通,低电平有效;MEM 方式:读选通输出 RD#,低电平有效
26RST#输出复位输出,低电平有效
3AS#三态输出EPP 方式:地址操作选通,低电平有效;MEM 方式:地址线输出 ADDR 或者 A0
27WAIT#输入对于 CH341B/F/A 芯片:请求等待,低有效,内置上拉
7INT#输入中断请求输入,上升沿有效,内置上拉电阻
5ERR#输入自定义通用输入,内置上拉电阻
8SLCT输入自定义通用输入,内置上拉电阻
6PEMP输入自定义通用输入,内置上拉电阻

5.6. 同步串口方式的引脚

341B/A/F引脚号341H引脚号引脚名称类型引脚说明
2217DIN输入4 线串口数据输入,别名 MISO 或 SDI,内置上拉电阻
2116DIN2输入5 线串口数据输入 2,内置上拉电阻
2015DOUT三态输出4 线串口数据输出,别名 MOSI 或 SDO
1914DOUT2三态输出5 线串口数据输出 2
1813DCK三态输出4 线/5 线串口时钟输出,别名 SCK
17~1512~10CS2~CS0三态输出4 线串口片选输出 2#~0#
24SCL开漏输出2 线串口的时钟输出,内置上拉电阻
23SDA开漏输出及输入2 线串口的数据输入输出,内置上拉电阻
2619RST#输出复位输出,低电平有效
73INT#输入中断请求输入,上升沿有效,内置上拉电阻
5,8,6输入自定义通用输入,内置上拉电阻

6、CH347引脚

6.1. 一般说明

CH347 芯片具有多种工作模式,同一引脚在不同工作模式下的功能和定义可能不同。CH347T 芯片在上电复位或外部复位时,检测配置引脚状态自动配置工作模式。
注:FT 表示引脚作为输入时耐受 5V 电压。

6.2. CH347F 引脚

6.3 标准的公共引脚

引脚号引脚名称类型引脚说明
21VCC电源电源调节器正电源输入端,需要外接退耦电容
0,20GND电源公共接地端,需要连接 USB 总线的地线
3RST#输入外部复位输入端,低电平有效,内置上拉电阻
28UD+USB 信号直接连到 USB 总线的 D+数据线,不能额外串接电阻
27UD-USB 信号直接连到 USB 总线的 D-数据线,不能额外串接电阻
1XI输入晶体振荡输入端
2XO输出晶体振荡反相输出端
6VIO电源I/O 端口电源输入端,需要外接退耦电容

6.4 SPI 接口相关引脚

引脚号引脚名称类型引脚说明
13SCS0输出4 线串口的片选输出 0
7SCS1输出4 线串口的片选输出 1
14SCK输出4 线串口的时钟输出,别名 DCK
15MISO输入(FT)4 线串口的数据输入,别名 DIN 或 SDI,内置上拉电阻
16MOSI输出4 线串口的数据输出,别名 DOUT 或 SDO

6.5 JTAG 接口相关引脚

引脚号引脚名称类型引脚说明
25TDI输出JTAG 接口的数据输出
24TDO输入(FT)JTAG 接口的数据输入,内置上拉电阻
23TCK输出JTAG 接口的时钟输出
26TMS输出JTAG 接口的模式选择
9TRST输出JTAG 接口的复位输出
8SRST输出JTAG 接口的系统复位输出

6.6 SWD 接口相关引脚

引脚号引脚名称类型引脚说明
23SWDCLK输出SWD 接口的时钟引脚
26SWDIO输出/输入(FT)SWD 接口的数据引脚

6.7 I2C 接口相关引脚

引脚号引脚名称类型引脚说明
12SDA输出,输入(FT)2 线串口的数据输入输出
11SCL输出2 线串口的时钟输出

6.8 UART 接口相关引脚

引脚号引脚名称类型引脚说明
19TXD0输出UART0 的串行数据输出,空闲态为高电平
22RXD0输入(FT)UART0 的串行数据输入,内置上拉电阻
4TXD1输出UART1 的串行数据输出,空闲态为高电平
5RXD1输入UART1 的串行数据输入,内置上拉电阻
17CTS0输入(FT)UART0 的 MODEM 输入信号,清除发送,低有效;
18RTS0输出UART0 的 MODEM 输出信号,请求发送,低有效;上电期间,如果 RTS0 引脚检测到外接了下拉电阻则禁用内部 EEPROM 中配置参数,启用芯片自带默认参数
11CTS1输入(FT)UART1 的 MODEM 输入信号,清除发送,低有效;
12RTS1输出UART1 的 MODEM 输出信号,请求发送,低有效;
10DTR0/TNOW0输出UART0 的 MODEM 输出信号,数据终端就绪,低有效;UART0 的 RS485 发送和接收控制引脚;上电期间,如果 DTR0 引脚检测到外接了下拉电阻则 DTR0 和 DTR1 分别切换为 TNOW0 和 TNOW1 功能
7DTR1/TNOW1输出UART1 的 MODEM 输出信号,数据终端就绪,低有效;UART1 的 RS485 发送和接收控制引脚

6.9 GPIO 相关引脚

引脚号引脚名称类型引脚说明
17GPIO0输入(FT) 输出通用 GPIO0,用于 IO 口输入或输出。
18GPIO1输入(FT) 输出通用 GPIO1,用于 IO 口输入或输出。
10GPIO2输入 输出通用 GPIO2,用于 IO 口输入或输出。
9GPIO3输入 输出通用 GPIO3,用于 IO 口输入或输出。
23GPIO4输入(FT) 输出通用 GPIO4,用于 IO 口输入或输出。
24GPIO5输入(FT) 输出通用 GPIO5,用于 IO 口输入或输出。
25GPIO6输入(FT) 输出通用 GPIO6,用于 IO 口输入或输出。
26GPIO7输入(FT) 输出通用 GPIO7,用于 IO 口输入或输出。

注 1:CH347F 的第 17 和第 18 引脚的电源来自 VCC,为 3.3V 信号电平;其它引脚的电源来自 VIO,为 VIO 相匹配的 3.3V/2.5/1.8V 信号电平。
4.3. CH347T 引脚

6.10 标准的公共引脚

引脚号引脚名称类型引脚说明
14VCC电源电源调节器正电源输入端,需要外接退耦电容
18GND电源公共接地端,需要连接 USB 总线的地线
1RST#输入外部复位输入端,低电平有效,内置上拉电阻
17UD+USB 信号直接连到 USB 总线的 D+数据线,不能额外串接电阻
16UD-USB 信号直接连到 USB 总线的 D-数据线,不能额外串接电阻
19XI输入晶体振荡输入端
20XO输出晶体振荡反相输出端

6.11 工作模式配置引脚

引脚号引脚名称类型引脚说明
10DTR1/TNOW1复位期间输入(FT)芯片复位时为工作模式 MODE0 配置引脚 0,配合 MODE1 引脚使用,内置上拉电阻
13RTS1/GPIO7复位期间输入(FT)芯片复位时为工作模式 MODE1 配置引脚 1,配合 MODE0 引脚使用,内置上拉电阻

6.12 工作模式 0 引脚

引脚号引脚名称类型引脚说明
8TXD0输出UART0 的串行数据输出,空闲态为高电平
12RXD0输入(FT)UART0 的串行数据输入,内置上拉电阻
3TXD1输出UART1 的串行数据输出,空闲态为高电平
4RXD1输入(FT)UART1 的串行数据输入,内置上拉电阻
9DTR0/TNOW0 / GPIO5输出UART0 的 MODEM 输出信号,数据终端就绪,低有效;UART0 的 RS485 发送和接收控制引脚;通用 GPIO5,用于 IO 口输入或输出。上电期间,如果 DTR0 引脚检测到外接了下拉电阻则 DTR0 和 DTR1 分别切换为 TNOW0 和 TNOW1 功能
10DTR1/TNOW1输出UART1 的 MODEM 输出信号,数据终端就绪,低有效;UART1 的 RS485 发送和接收控制引脚
6CTS0/GPIO0输入(FT)UART0 的 MODEM 输入信号,清除发送,低有效;通用 GPIO0,用于 IO 口输入或输出
7RTS0/GPIO1输出UART0 的 MODEM 输出信号,请求发送,低有效;通用 GPIO1,用于 IO 口输入或输出。上电期间,如果 RTS0 引脚检测到外接了下拉电阻则禁用内部 EEPROM 中配置参数,启用芯片自带默认参数
2CTS1/GPIO6输入(FT)UART1 的 MODEM 输入信号,清除发送,低有效;通用 GPIO6,用于 IO 口输入或输出
13RTS1/GPIO7输出UART1 的 MODEM 输出信号,请求发送,低有效;通用 GPIO7,用于 IO 口输入或输出
11RI0/GPIO3输入(FT)UART0 的 MODEM 输入信号,振铃指示,低有效;通用 GPIO3,用于 IO 口输入或输出
15DCD0/GPIO4输入(FT)UART0 的 MODEM 输入信号,载波检测,低有效;通用 GPIO4,用于 IO 口输入或输出
5DSR0/GPIO2输入(FT)UART0 的 MODEM 输入信号,数据装置就绪,低有效;通用 GPIO2,用于 IO 口输入或输出EB

6.13 工作模式 1/2 引脚

引脚号引脚名称类型引脚说明
3TXD1输出UART1 的串行数据输出,空闲态为高电平
4RXD1输入(FT)UART1 的串行数据输入,内置上拉电阻
10DTR1/TNOW1输出UART1 的 MODEM 输出信号,数据终端就绪,低有效;UART1 的 RS485 发送和接收控制引脚
2CTS1输入(FT)UART1 的 MODEM 输入信号,清除发送,低有效
13RTS1输出UART1 的 MODEM 输出信号,请求发送,低有效
7MISO输入(FT)4 线串口的数据输入,别名 DIN 或 SDI,内置上拉电阻
8MOSI输出4 线串口的数据输出,别名 DOUT 或 SDO
6SCK输出4 线串口的时钟输出,别名 DCK
5SCS0输出4 线串口的片选输出 0
9SCS1输出4 线串口的片选输出 1
12SDA输出输入(FT)
11SCL输出2 线串口的时钟输出,内置上拉电阻
15ACT输出USB 配置完成状态输出引脚,低电平有效;上电期间,如果 ACT 引脚检测到外接了下拉电阻则 DTR1 切换为 TNOW1 功能

6.14 工作模式 3 引脚

引脚号引脚名称类型引脚说明
3TXD1输出UART1 的串行数据输出,空闲态为高电平
4RXD1输入(FT)UART1 的串行数据输入,内置上拉电阻
10DTR1/TNOW1输出UART1 的 MODEM 输出信号,数据终端就绪,低有效;UART1 的 RS485 发送和接收控制引脚
2CTS1输入(FT)UART1 的 MODEM 输入信号,清除发送,低有效
13RTS1输出UART1 的 MODEM 输出信号,请求发送,低有效
8TDI输出JTAG 接口的数据输出
7TDO输入(FT)JTAG 接口的数据输入,内置上拉电阻
6TCK输出JTAG 接口的时钟输出
9TRST输出JTAG 接口的复位输出
5TMS输出JTAG 接口的模式选择
11,12GPIO输入/输出通用 GPIO,用于 IO 口输入或输出
15ACT输出USB 配置完成状态输出引脚,低电平有效;上电期间,如果 ACT 引脚检测到外接了下拉电阻则 DTR1 切换为 TNOW1 功能

这篇关于USB转I2C转SPI芯片CH341与CH347比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067616

相关文章

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

关键字synchronized、volatile的比较

关键字volatile是线程同步的轻量级实现,所以volatile性能肯定比synchronized要好,并且volatile只能修饰于变量,而synchronized可以修饰方法,以及代码块。随着JDK新版本的发布,synchronized关键字的执行效率上得到很大提升,在开发中使用synchronized关键字的比率还是比较大的。多线程访问volatile不会发生阻塞,而synchronize

Usb Audio Device Descriptor(10) Hid Device

对于 Standard Interface Descriptor, 当 bInterfaceClass=0x03时,即为HID设备。Standard Interface Descriptor如下 struct usb_standard_interface_descriptor{U8 bLength; /*Size of this descriptor in bytes*/U8 bDescrip

stl的sort和手写快排的运行效率哪个比较高?

STL的sort必然要比你自己写的快排要快,因为你自己手写一个这么复杂的sort,那就太闲了。STL的sort是尽量让复杂度维持在O(N log N)的,因此就有了各种的Hybrid sort algorithm。 题主你提到的先quicksort到一定深度之后就转为heapsort,这种是introsort。 每种STL实现使用的算法各有不同,GNU Standard C++ Lib

研究生生涯中一些比较重要的网址

Mali GPU相关: 1.http://malideveloper.arm.com/resources/sdks/opengl-es-sdk-for-linux/ 2.http://malideveloper.arm.com/resources/tools/arm-development-studio-5/ 3.https://www.khronos.org/opengles/sdk/do

性能测试工具 wrk,ab,locust,Jmeter 压测结果比较

前言 在开发服务端软件时,经常需要进行性能测试,一般我采用手写性能测试代码的方式进行测试,那有什么现成的好的性能测试工具吗? 性能测试工具 wrk,ab,locust,Jmeter 压测结果比较 详见: 性能测试工具 wrk,ab,locust,Jmeter 压测结果比较 Jmeter性能测试 入门

Android rk3399 UAC(USB Audio)开发笔记

一、UAC有1.0和2.0,因Windows对2.0支持不好,我使用的是UAC1.0驱动 内核配置:CONFIG_USB_CONFIGFS_F_UAC1          ---这个宏配置无需物理codec,使用虚拟 alsa codec  驱动路径:"kernel\drivers\usb\gadget\function\f_uac1.c" 内核配置:CONFIG_USB_CONFIGFS_