FreeRTOS简单内核实现6 优先级

2024-06-16 15:20

本文主要是介绍FreeRTOS简单内核实现6 优先级,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0、思考与回答
    • 0.1、思考一
  • 1、就绪链表
    • 1.1、创建
    • 1.2、初始化
    • 1.3、添加任务
      • 1.3.1、prvAddNewTaskToReadyList( )
      • 1.3.2、prvAddTaskToReadyList( )
    • 1.4、寻找最高优先级任务
  • 2、修改内核程序
    • 2.1、TCB
    • 2.2、xTaskCreateStatic( )
    • 2.3、prvInitialiseNewTask( )
    • 2.4、vTaskStartScheduler( )
    • 2.5、vTaskDelay( )
    • 2.6、vTaskSwitchContext( )
    • 2.7、xTaskIncrementTick( )
  • 3、实验
    • 3.1、测试
    • 3.2、待改进


0、思考与回答

0.1、思考一

如何实现 RTOS 内核支持多优先级?

因为不支持优先级,所以所有的任务都插入了一个名为 pxReadyTasksLists 的就绪链表中,相当于所有任务的优先级都是一致的,那如果我们创建一个就绪链表数组,数组下标代表优先级,优先级为 x 的任务就插入到 pxReadyTasksLists[x] 中,这样通过一个就绪链表数组就实现了将不同优先级的任务放在不同的就绪链表中,方便在进行任务调度时支持任务优先级

1、就绪链表

1.1、创建

将原来的就绪链表修改为就绪链表数组

/* task.c */
// 就绪链表数组
List_t pxReadyTasksLists[configMAX_PRIORITIES];

configMAX_PRIORITIES 是一个表示 RTOS 内核支持的最大优先级的宏定义,值得提醒的是目前 RTOS 支持的最大优先级数量为 32 个(这与后面使用到的记录优先级的位图有关,具体内容会在后面遇到优先级位图时做介绍)

/* FreeRTOSConfig.h */
// 设置 RTOS 支持的最大优先级
#define configMAX_PRIORITIES                    5

1.2、初始化

修改就绪链表初始化函数,即遍历整个就绪链表数组然后依次对每个就绪链表进行初始化,具体如下所示

/* task.c */
// 就绪链表始化函数
void prvInitialiseTaskLists(void)
{UBaseType_t uxPriority;// 初始化就绪任务链表for(uxPriority = (UBaseType_t)0U;uxPriority < (UBaseType_t)configMAX_PRIORITIES; uxPriority++){vListInitialise(&(pxReadyTasksLists[uxPriority]));}
}

1.3、添加任务

1.3.1、prvAddNewTaskToReadyList( )

已完成的内核中添加任务到就绪链表是对每个任务手动调用 vListInsertEnd() 函数实现的,现在创建一个函数用于在任务创建后自动将其添加到就绪链表中,具体函数流程如下所示

  1. 当前系统中任务数量加一
  2. 如果第一次创建任务,就初始化任务相关的链表(就绪链表数组等)
  3. 如果不是第一次创建任务,就根据任务的优先级将 pxCurrentTCB 指向最高优先级任务的 TCB

注意:if(pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority) 判断 pxCurrentTCB 指向最高优先级任务的 TCB 时取了 = 号,也就意味着,如果系统中创建了两个相同优先级的任务,那启动调度器后第一个执行的任务将是最后创建的那个任务

任务控制块的 uxPriority 参数将在 “2.1、TCB” 小节中添加

/* task.c */
// 全局任务计数器
static volatile UBaseType_t uxCurrentNumberOfTasks = (UBaseType_t)0U;// 添加任务到就绪链表中
static void prvAddNewTaskToReadyList(TCB_t* pxNewTCB)
{// 进入临界段taskENTER_CRITICAL();{// 全局任务计数器加一操作uxCurrentNumberOfTasks++;// 如果 pxCurrentTCB 为空,则将 pxCurrentTCB 指向新创建的任务if(pxCurrentTCB == NULL){pxCurrentTCB = pxNewTCB;// 如果是第一次创建任务,则需要初始化任务相关的列表if(uxCurrentNumberOfTasks == (UBaseType_t)1){// 初始化任务相关的列表prvInitialiseTaskLists();}}else // 如果pxCurrentTCB不为空// 则根据任务的优先级将 pxCurrentTCB 指向最高优先级任务的 TCB {if(pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority){pxCurrentTCB = pxNewTCB;}}// 将任务添加到就绪列表prvAddTaskToReadyList(pxNewTCB);}// 退出临界段taskEXIT_CRITICAL();
}

1.3.2、prvAddTaskToReadyList( )

是怎么把任务添加到就绪链表的?

首先将要添加任务的优先级记录在优先级位图中,然后通过 vListInsertEnd() 函数将任务插入到对应优先级的就绪链表中,具体如下所示

/* task.c */
// 32位的优先级位图,默认全 0 ,记录了所有存在的优先级
static volatile UBaseType_t uxTopReadyPriority = 0;// 根据任务优先级置位优先级位图
#define taskRECORD_READY_PRIORITY(uxPriority)	portRECORD_READY_PRIORITY(uxPriority, uxTopReadyPriority)// 根据任务优先级添加任务到对应的就绪链表
#define prvAddTaskToReadyList(pxTCB) \taskRECORD_READY_PRIORITY((pxTCB)->uxPriority); \vListInsertEnd(&(pxReadyTasksLists[(pxTCB)->uxPriority]), \&((pxTCB)->xStateListItem)); \

什么是优先级位图?

优先级位图本质是一个 32 位的数,如果有对应的优先级任务,就将优先级位图这个变量的对应位标记为 1 (比如当前任务的优先级为 2 ,则将优先级位图的从右向左第二位置一)

为什么要使用优先级位图记录任务优先级?

方便快速找到当前系统中存在的最高优先级,通过计算优先级位图的前导零个数,然后让 31 减去前导零个数就可以很快找到最高优先级

/* protMacro.h */
#define portRECORD_READY_PRIORITY(uxPriority, uxReadyPriorities) (uxReadyPriorities) |= (1UL << (uxPriority))

1.4、寻找最高优先级任务

RTOS 支持任务优先级后,任务的调度策略就可以修改为始终让系统中处于就绪态的最高优先级的任务得到执行,因此我们需要寻找最高优先级任务,寻找到之后将 pxCurrentTCB 指向该任务,然后任务调度切换任务时就会切换到该最高优先级的任务

/* task.c */
// 找到就绪列表最高优先级的任务并更新到 pxCurrentTCB
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
{ \UBaseType_t uxTopPriority; \/* 寻找最高优先级 */ \portGET_HIGHEST_PRIORITY(uxTopPriority, uxTopReadyPriority); \/* 获取优先级最高的就绪任务的 TCB,然后更新到 pxCurrentTCB */ \listGET_OWNER_OF_NEXT_ENTRY(pxCurrentTCB, \&(pxReadyTasksLists[uxTopPriority])); \
}

获取系统中存在的最高优先级任务的原理正如 “1.3.2、prvAddTaskToReadyList( )” 小节中 ”为什么要使用优先级位图记录任务优先级?“ 问题所述内容

/* protMacro.h */
#define portGET_HIGHEST_PRIORITY(uxTopPriority, uxReadyPriorities) uxTopPriority = (31UL - (uint32_t) __clz((uxReadyPriorities)))

2、修改内核程序

2.1、TCB

在任务控制块中增加任务优先级参数

/* task.h */
typedef struct tskTaskControlBlock
{// 省略之前的结构体成员定义UBaseType_t           uxPriority;                           // 优先级
}tskTCB;

2.2、xTaskCreateStatic( )

修改静态创建任务函数,在参数列表中增加任务优先级参数,然后将创建好的任务直接自动添加到就绪链表中,不再需要额外手动将任务插入

/* task.c */
// 静态创建任务函数
#if (configSUPPORT_STATIC_ALLOCATION == 1)
TaskHandle_t xTaskCreateStatic(TaskFunction_t pxTaskCode,const char* const pcName,const uint32_t ulStackDepth,void* const pvParameters,         UBaseType_t uxPriority,           // 优先级StackType_t* const puxTaskBuffer,TCB_t* const pxTaskBuffer)
{// 省略未改变的代码......// 真正的创建任务函数prvInitialiseNewTask(pxTaskCode,pcName,ulStackDepth,pvParameters,uxPriority,                      // 优先级&xReturn,pxNewTCB);// 创建完任务自动将任务添加到就绪链表prvAddNewTaskToReadyList(pxNewTCB);// 省略未改变的代码......
}
#endif/* task.h */
// 函数声明
TaskHandle_t xTaskCreateStatic(TaskFunction_t pxTaskCode,const char* const pcName,const uint32_t ulStackDepth,void* const pvParameters,UBaseType_t uxPriority,           // 优先级StackType_t* const puxTaskBuffer,TCB_t* const pxTaskBuffer);

2.3、prvInitialiseNewTask( )

由于增加了优先级参数,因此需要在真正的创建任务函数中增加对任务优先级初始化的部分,具体如下所示

/* task.c */
// 真正的创建任务函数																 
static void prvInitialiseNewTask(TaskFunction_t pxTaskCode,const char* const pcName,const uint32_t ulStackDepth,void* const pvParameters,UBaseType_t uxPriority,TaskHandle_t* const pxCreatedTask,TCB_t* pxNewTCB)
{// 省略未改变的代码......// 初始化优先级if(uxPriority >= (UBaseType_t)configMAX_PRIORITIES){uxPriority = (UBaseType_t)configMAX_PRIORITIES - (UBaseType_t)1U;}pxNewTCB->uxPriority = uxPriority;if((void*)pxCreatedTask != NULL){*pxCreatedTask = (TaskHandle_t)pxNewTCB;}
}

2.4、vTaskStartScheduler( )

由于在启动任务调度器函数中创建了空闲任务,因此还需要在创建空闲任务的参数列表中增加优先级参数,为了不抢占任何其他任务的运行,空闲任务的优先级应该保持为最低优先级,使用 taskIDLE_PRIORITY 宏定义表示,具体如下所示

/* task.c */
// 启动任务调度器
void vTaskStartScheduler(void)
{// 创建空闲任务TaskHandle_t xIdleTaskHandle = xTaskCreateStatic((TaskFunction_t)prvIdleTask,(char *)"IDLE",(uint32_t)confgiMINIMAL_STACK_SIZE,(void *)NULL,(UBaseType_t)taskIDLE_PRIORITY,(StackType_t *)IdleTasKStack,(TCB_t *)&IdleTaskTCB);if(xPortStartScheduler() != pdFALSE){}
}
/* task.h */
// 空闲任务优先级最低
#define taskIDLE_PRIORITY              ((UBaseType_t) 0U)

2.5、vTaskDelay( )

当一个任务调用阻塞延时函数时,可以将其优先级从优先级位图上清除掉,这样在寻找最高优先级任务时就不会找到阻塞状态的该任务

值得提醒的是,这种做法虽然可以简单的达到让进入阻塞状态的任务暂时脱离调度的效果,但是由于其仍然存在就绪链表中,并不是真正的从就绪链表中移除,因此在遍历就绪链表对就绪态的任务操作时会产生额外的操作

/* task.c */
// 阻塞延时函数
void vTaskDelay(const TickType_t xTicksToDelay)
{// 省略未修改程序......// 将任务从优先级位图上清除,这样调度时就不会找到该任务taskRESET_READY_PRIORITY(pxTCB->uxPriority);// 主动产生任务调度,让出 MCU taskYIELD();
}
/* task.c */
// 根据任务优先级清除优先级位图
#define taskRESET_READY_PRIORITY(uxPriority) \
{ \portRESET_READY_PRIORITY((uxPriority), (uxTopReadyPriority)); \
}

与置位优先级位图原理刚好相反,清除优先级位图则是根据任务的优先级将优先级位图上对应的位清零,具体如下所示

/* protMacro.h */
#define portRESET_READY_PRIORITY(uxPriority, uxReadyPriorities) (uxReadyPriorities) &= ~(1UL << (uxPriority))

2.6、vTaskSwitchContext( )

任务调度函数中始终选择系统中就绪状态的最高优先级任务

/* task.c */
// 任务调度函数
void vTaskSwitchContext(void)
{taskSELECT_HIGHEST_PRIORITY_TASK();
}

2.7、xTaskIncrementTick( )

更新任务阻塞延时参数,如果任务延时时间到期,将其任务优先级在优先级位图上恢复,然后产生任务调度切换任务

/* task.c */
// 更新任务延时参数
void xTaskIncrementTick(void)
{TCB_t *pxTCB = NULL;uint8_t i =0;uint8_t xSwitchRequired = pdFALSE;// 更新 xTickCount 系统时基计数器const TickType_t xConstTickCount = xTickCount + 1;xTickCount = xConstTickCount;// 扫描就绪列表中所有任务,如果延时时间不为 0 则减 1 for(i=0; i<configMAX_PRIORITIES; i++){pxTCB = (TCB_t *)listGET_OWNER_OF_HEAD_ENTRY((&pxReadyTasksLists[i]));if(pxTCB->xTicksToDelay > 0){pxTCB->xTicksToDelay--;}// 延时时间到,将任务就绪else {taskRECORD_READY_PRIORITY(pxTCB->uxPriority);xSwitchRequired = pdTRUE;}}// 如果就绪链表中有任务从阻塞状态恢复就产生任务调度if(xSwitchRequired == pdTRUE){// 产生任务调度portYIELD();}
}

3、实验

3.1、测试

测试程序与 FreeRTOS简单内核实现5 阻塞延时 几乎一致,但是已经不需要我们手动将任务插入就绪链表中了,不过创建任务时需要额外指定任务的优先级参数,另外我们添加一个模拟任务一直运行的延时函数,具体如下所示

/* main.c */
/* USER CODE BEGIN Includes */
#include "FreeRTOS.h"
/* USER CODE END Includes *//* USER CODE BEGIN PV */
// 软件延时
void delay(uint32_t count)
{for(;count!=0;count--);
}TaskHandle_t Task1_Handle;
#define TASK1_STACK_SIZE                    128
StackType_t Task1Stack[TASK1_STACK_SIZE];
TCB_t Task1TCB;
UBaseType_t Task1Priority = 1;TaskHandle_t Task2_Handle;
#define TASK2_STACK_SIZE                    128
StackType_t Task2Stack[TASK2_STACK_SIZE];
TCB_t Task2TCB;
UBaseType_t Task2Priority = 2;// 任务 1 入口函数
void Task1_Entry(void *parg)
{for(;;){HAL_GPIO_TogglePin(GREEN_LED_GPIO_Port, GREEN_LED_Pin);vTaskDelay(100);}
}
// 任务 2 入口函数
void Task2_Entry(void *parg)
{for(;;){HAL_GPIO_TogglePin(ORANGE_LED_GPIO_Port, ORANGE_LED_Pin);// 模拟高优先级任务一直运行delay(10000000);}
}
/* USER CODE END PV *//* USER CODE BEGIN 2 */
// 创建任务 1 和 2
Task1_Handle = xTaskCreateStatic((TaskFunction_t)Task1_Entry,(char *)"Task1",(uint32_t)TASK1_STACK_SIZE,(void *)NULL,(UBaseType_t)Task1Priority,(StackType_t *)Task1Stack,(TCB_t *)&Task1TCB);Task2_Handle = xTaskCreateStatic((TaskFunction_t)Task2_Entry,(char *)"Task2",(uint32_t)TASK2_STACK_SIZE,(void *) NULL,(UBaseType_t)Task2Priority,(StackType_t *)Task2Stack,(TCB_t *)&Task2TCB );
// 启动任务调度器,永不返回
vTaskStartScheduler();
/* USER CODE END 2 */

使用逻辑分析仪捕获 GREEN_LED 和 ORANGE_LED 两个引脚的电平变化,具体如下图所示

![[Kernel_6.1.png]]

可以发现因为我们使用软件延时模拟高优先级 Task2 任务一直运行,导致低优先级的 Task1 任务完全没时间运行,也即 Task1 被饿死了

将 Task1 的优先级修改为 3 ,重新编译烧录程序再次观察两个引脚的电平变化,具体如下图所示

![[Kernel_6.2.png]]

可以发现 Task1 不再被饿死,通过上述测试可以证明目前的 RTOS 已经支持多任务优先级

3.2、待改进

当前 RTOS 简单内核已实现的功能有

  1. 静态方式创建任务
  2. 手动切换任务
  3. 临界段保护
  4. 任务阻塞延时
  5. 支持任务优先级

当前 RTOS 简单内核存在的缺点有

  1. 缺少阻塞链表
  2. 不支持时间片轮询

这篇关于FreeRTOS简单内核实现6 优先级的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066812

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja