费曼的博士学位论文及下载

2024-06-16 11:12

本文主要是介绍费曼的博士学位论文及下载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原始链接

PDF影印版下载

以前看《费曼物理学讲义》觉得最小作用原理部分讲得非常多、而且比较炫。现在知道原因了。

The principle of least action in quantum mechanics

Richard Phillips Feynman(Princeton U.
)

May, 1942
74 pages
Supervisor:

John Archibald Wheeler

Thesis: PhD

Princeton U.

(1942)
ISBN:

9789812567635

DOI:

10.1142/9789812567635_0001

View in:

CERN Document Server, ADS Abstract Service

pdflinksreference search
13 citations
Citations per year
201020132016201920221023
Abstract:
A generalization of quantum mechanics is given in which the central mathematical concept is the analogue of the action in classical mechanics. It is therefore applicable to mechanical systems whose equations of motion cannot be put into Hamiltonian form. It is only required that some form of least action principle be available. It is shown that if the action is the time integral of a function of velocity and position (that is, if a Lagrangian exists), the generalization reduces to the usual form of quantum mechanics. In the classical limit, the quantum equations go over into the corresponding classical ones, with the same action function. As a special problem, because of its application to electrodynamics, and because the results serve as a confirmation of the proposed generalization, the interaction of two systems through the agency of an intermediate harmonic oscillator is discussed in detail. It is shown that in quantum mechanics, just as in classical mechanics, under certain circumstances the oscillator can be completely eliminated, its place being taken by a direct, but, in general, not instantaneous, interaction between the two systems. The work is non-relativistic throughout.
Note:

Ph.D. Thesis (Advisor: John Archibald Wheeler)Thesis

这篇关于费曼的博士学位论文及下载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066301

相关文章

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

2. 下载rknn-toolkit2项目

官网链接: https://github.com/airockchip/rknn-toolkit2 安装好git:[[1. Git的安装]] 下载项目: git clone https://github.com/airockchip/rknn-toolkit2.git 或者直接去github下载压缩文件,解压即可。

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

前端form表单+ifarme方式实现大文件下载

// main.jsimport Vue from 'vue';import App from './App.vue';import { downloadTokenFile } from '@/path/to/your/function'; // 替换为您的函数路径// 将 downloadTokenFile 添加到 Vue 原型上Vue.prototype.$downloadTokenF

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需