Mac M3 Pro 部署Spark-2.3.2 On Hive-3.1.3

2024-06-16 00:28
文章标签 部署 mac 3.1 hive pro 2.3 spark m3

本文主要是介绍Mac M3 Pro 部署Spark-2.3.2 On Hive-3.1.3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

mac的配置如下

1、下载安装包

官网

Apache Projects Releases

在search中搜索hadoop、hive

spark : Index of /dist/spark/spark-2.3.2

网盘

Hadoop https://pan.baidu.com/s/1p4BXq2mvby2B76lmpiEjnA?pwd=r62r 提取码: r62r

Hive  https://pan.baidu.com/s/12PUQfy_mi914wd6p7iWsBw?pwd=bnrr 提取码: bnrr

Spark二进制包  https://pan.baidu.com/s/1fJ5yRH_9K7VFlixBJ1MH1g?pwd=v987 提取码: v987

Spark源码打好的包 https://pan.baidu.com/s/1H0OxQOnuswBfoIZjNB8jEA?pwd=9yks 提取码: 9yks

Spark源码包 https://pan.baidu.com/s/1p_IRlhwT1eQxrIK3jVHbww?pwd=bhkx 提取码: bhkx

Zookeeper https://pan.baidu.com/s/1j6iy5bZkrY-GKGItenRB2w?pwd=irrx 提取码: irrx

mysql-connector-java-8.0.15.jar https://pan.baidu.com/s/1YHVMrG66lIHVHEH-jcUsVQ?pwd=4ipc 提取码: 4ipc

与hive兼容的spark版本可通过hive源码的pom.xml中查看

2、解压安装

Hadoop、Zookeeper 请查看

 Mac M3 Pro安装Hadoop-3.3.6-CSDN博客

Mac M3 Pro 安装 Zookeeper-3.4.6-CSDN博客

mysql 可直接使用 brew install mysql 进行安装

# 将安装包移动到目标目录
mv ~/Download/apache-hive-3.1.3-bin.tar.gz /opt/module
mv ~/Download/spark-2.3.2-bin-without-hadoop.tgz /opt/module# 进入目标目录
cd /opt/module# 解压安装包
tar -zxvf apache-hive-3.1.3-bin.tar.gz
tar -zxvf spark-2.3.2-bin-without-hadoop.tgz# 修改目录名
mv apache-hive-3.1.3-bin hive
mv spark-2.3.2-bin-without-hadoop spark# 添加mysql-connector-java-8.0.15.jar到lib目录
mv ~/Download/mysql-connector-java-8.0.15.jar /opt/module/hive/lib# 添加环境变量sudo vim /etc/profileexport JAVA_HOME="/Library/Java/JavaVirtualMachines/jdk8/Contents/Home"
export MYSQL_HOME="/opt/homebrew/Cellar/mysql@8.0/8.0.36_1"export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export HADOOP_HOME=/opt/module/hadoop
export JAVA_LIBRARY_PATH="$HADOOP_HOME/lib/native"
export HADOOP_COMMON_LIB_NATIVE_DIR="$HADOOP_HOME/lib/native"
export HADOOP_LOG_DIR=$HADOOP_HOME/logs
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HIVE_HOME=/opt/module/hive
export HIVE_CONF_DIR=$HIVE_HOME/conf
export HIVE_AUX_JARS_PATH=$HIVE_HOME/lib
export HADOOP_USER_NAME=hdfs
export SPARK_HOME=/opt/module/spark
export ZOOKEEPER_HOME=/opt/module/zookeeper
export PATH="$JAVA_HOME/bin:$MYSQL_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HIVE_HOME/bin:$SPARK_HOME/bin:$ZOOKEEPER_HOME/bin:$PATH:."# 保存后使其生效
source /etc/profile

3、修改配置

cd /opt/module/hive/conf
cp hive-env.sh.template hive-env.sh
cp hive-default.xml.template hive-site.xml
vim hive-env.sh
# 添加
export HADOOP_HEAPSIZE=4096vim hive-site.xml# 下面的内容与本地环境比较,存在的则修改,不存在的则添加
<property><name>hive.execution.engine</name><value>spark</value></property>
<property><name>hive.metastore.warehouse.dir</name><value>/user/hive/warehouse</value></property><property><name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://127.0.0.1:3306/hive?createDatabaseIfNotExist=true&amp;useSSL=false</value></property><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.cj.jdbc.Driver</value></property><property><name>javax.jdo.option.ConnectionUserName</name><value>root</value></property><property><name>javax.jdo.option.ConnectionPassword</name><value>root</value></property><!--元数据是否校验--><property><name>hive.metastore.schema.verification</name><value>false</value></property><property><name>hive.server2.thrift.port</name><value>10000</value><description>Port number of HiveServer2 Thrift interface when hive.server2.transport.mode is 'binary'.</description></property><property><name>spark.yarn.jars</name><value>hdfs:///spark/spark-jars/*.jar</value></property><property><name>hive.spark.client.connect.timeout</name><value>1000ms</value></property><property><name>hive.exec.scratchdir</name> <value>/tmp/hive</value></property><property><name>hive.querylog.location</name><value>${java.io.tmpdir}/${user.name}</value></property><property><name>hive.server2.thrift.port</name><value>10000</value></property><property><name>hive.server2.webui.host</name><value>0.0.0.0</value></property><property><name>hive.server2.webui.port</name><value>10002</value></property> <property><name>hive.server2.long.polling.timeout</name><value>5000ms</value></property><property><name>hive.server2.enable.doAs</name><value>false</value></property><property><name>spark.home</name><value>/opt/module/spark</value></property> <property><name>spark.master</name><value>spark://127.0.0.1:7077</value></property><property><name>spark.submit.deployMode</name><value>client</value></property> <property><name>spark.eventLog.enabled</name><value>true</value></property><property><name>spark.eventLog.dir</name><value>hdfs:///spark/log</value></property><property><name>spark.serializer</name><value>org.apache.spark.serializer.KryoSerializer</value></property><property><name>spark.executor.memeory</name><value>8g</value></property><property><name>spark.driver.memeory</name><value>8g</value></property><property><name>spark.executor.extraJavaOptions</name><value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"</value></property><property><name>hive.support.concurrency</name><value>true</value></property><property><name>hive.exec.dynamic.partition.mode</name><value>nonstrict</value></property>
cd /opt/module/spark/conf
cp slaves.template slaves
vim slaves# 末尾添加
127.0.0.1cp spark-env.sh.template spark-env.shvim spark-env.sh# 末尾添加export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk8/Contents/Home
export SPARK_DIST_CLASSPATH=$(/opt/module/hadoop/bin/hadoop classpath)
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop/export SPARK_MASTER_HOST=127.0.0.1
export SPARK_MASTER_PORT=7077
export SPARK_MASTER_HOST=127.0.0.1
export SPARK_LOCAL_IP=127.0.0.1
export SPARK_EXECUTOR_MEMORY=8192mcp spark-defaults.conf.template spark-defaults.confvim spark-defaults.conf# 末尾添加spark.master                     spark://master:7077
spark.home                       /opt/module/spark
spark.eventLog.enabled           true
spark.eventLog.dir               hdfs:///spark/log
spark.serializer                 org.apache.spark.serializer.KryoSerializer
spark.executor.memory            4g
spark.driver.memory              4g
spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
spark.yarn.archive               hdfs:///spark/jars/spark2.3.2-without-hive-libs.jar
spark.yarn.jars                  hdfs:///spark/jars/spark2.3.2-without-hive-libs.jar# 拷贝hive-site.xml到spark的conf目录cp /opt/module/hive/conf/hive-site.xml /opt/module/spark/conf

 4、将spark的jars上传到hdfs

# hdfs上创建必要的目录
hdfs dfs -mkdir /tmp
hdfs dfs -mkdir /tmp/hive
hdfs dfs -mkdir /tmp/logs
hdfs dfs -mkdir /tmp/sparkhdfs dfs -mkdir /spark
hdfs dfs -mkdir /spark/jars
hdfs dfs -mkdir /spark/spark-jars
hdfs dfs -mkdir /spark/log# 安装目录创建目录
mkdir -p  $SPARK_HOME/work  $SPARK_HOME/logs  $SPARK_HOME/run
mkdir -p  $HIVE_HOME/logs# Spark 安装包默认会缺少 log4j slf4j 和 hadoop-comment之类的jar包,需要从hadoop、hive按照包目录中去复制到jars下去,如果没有就从开发时的maven仓库中去拷贝,或者到下载的spark-package-2.3.2.tgz中获取slf4j-api-1.7.21.jar
slf4j-log4j12-1.7.21.jar
log4j-1.2-api-2.17.1.jar
log4j-api-2.17.1.jar
log4j-core-2.17.1.jar
log4j-slf4j-impl-2.17.1.jar
log4j-web-2.17.1.jar
hadoop-common-3.3.6.jar
spark-network-common_2.11-2.3.2.jar# 进入spark安装包目录,将jars进行打包
cd /opt/module/sparkjar cv0f spark-2.3.2-without-hive-libs.jar -C ./jars .# 在hdfs上创建存放jar包目录
hdfs dfs -put spark2.3.2-without-hive-libs.jar /spark/jars/
hdfs dfs -put jars/* /spark/spark-jars

5、mysql中创建hive库

CREATE DATABASE hive;

6、hive初始化数据库

cd /opt/module/hive/binschematool -initSchema -dbType mysql --verbose

7、启动Spark

# 先跑一下测试示例验证spark是否正常
cd /opt/module/spark/binspark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 1G \
--num-executors 3 \
--executor-memory 1G \
--executor-cores 1 \
/opt/module/spark/examples/jars/spark-examples_*.jar 10# 如果出现下面的计算结果则表示成功
Pi is roughly 3.1391191391191393# 启动spark
cd ..
./bin/start-all.sh# 通过jps查看进程是否正常
jps -l# 查看是否有如下进程
org.apache.spark.deploy.master.Master
org.apache.spark.deploy.worker.Worker
org.apache.spark.executor.CoarseGrainedExecutorBackend# 如未启动成功请到日志目录中/opt/module/spark/logs 查看时间为最近的日志文件,根据报错进程排查
# 启动成功后可访问web ui界面,打开地址 http://127.0.0.1:8080/

8、启动HIVE

cd /opt/module/hivenohup ./bin/hive --service metastore &
nohup ./bin/hive --service hiveserver2 &# 检查是否启动成功ps -ef | grep HiveMetaStoreps -ef | grep hiveserver2# 如果启动失败 可以tail -999f nohup.out文件# 如果成功则可以看下hive的webui界面,http://127.0.0.1:10002/

9、检查是否成功

# 使用beeline 进入hive
beeline -u 'jdbc:hive2://127.0.0.1:10000'select version();select current_user();set hive.execution.engine;# 创建表 t1CREATE TABLE `t1`(`id` bigint,`name` string,`address` string);# 向表t1中插入数据INSERT INTO t1 VALUES(1,'one','beijing'),(2,'two','shanghai'),(3,'three','guangzhou'),(4,'four','shenzhen'),(5,'five','huzhou'),(6,'six','jiaxing'),(7,'seven','ningbo'),(8,'eight','shaoxing'),(9,'nine','nanjing');

10、执行表操作后查看控制台

参考地址

https://blog.csdn.net/qq_35745940/article/details/122152096

https://www.cnblogs.com/lenmom/p/10356643.html

这篇关于Mac M3 Pro 部署Spark-2.3.2 On Hive-3.1.3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065005

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

mac安装brew 与 HomeBrew

/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh >> brew_install BREW_REPO="

在 Windows 上部署 gitblit

在 Windows 上部署 gitblit 在 Windows 上部署 gitblit 缘起gitblit 是什么安装JDK部署 gitblit 下载 gitblit 并解压配置登录注册为 windows 服务 修改 installService.cmd 文件运行 installService.cmd运行 gitblitw.exe查看 services.msc 缘起

Solr部署如何启动

Solr部署如何启动 Posted on 一月 10, 2013 in:  Solr入门 | 评论关闭 我刚接触solr,我要怎么启动,这是群里的朋友问得比较多的问题, solr最新版本下载地址: http://www.apache.org/dyn/closer.cgi/lucene/solr/ 1、准备环境 建立一个solr目录,把solr压缩包example目录下的内容复制

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

mac jdk 1.7 dmg 官方版

百度云下载 https://pan.baidu.com/s/1SQiidrPFF5aZr4xlx0ekoQ https://pan.baidu.com/s/1SQiidrPFF5aZr4xlx0ekoQ   补充说明: 实际上oracle对于历史版本的jdk都有归档可以在官方网站上下载,只是需要注册个号就可以了。 地址如下: https://www.oracle.com/cn/java

JavaEE7 Servlet 3.1(JSR 340)规范中文版

http://www.iteye.com/news/27727-jinnianshilongnian     Jave EE 7中的部分规范已正式获得批准通过,其中包括JSR340 Java Servlet 3.1规范,去年翻译了该规范,在此分享出来,希望对某些朋友有所帮助,不足之处请指正。   点击直接下载    在线版目录   Servlet3.1规范翻译

Spring Roo 实站( 一 )部署安装 第一个示例程序

转自:http://blog.csdn.net/jun55xiu/article/details/9380213 一:安装 注:可以参与官网spring-roo: static.springsource.org/spring-roo/reference/html/intro.html#intro-exploring-sampleROO_OPTS http://stati

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求,一定不要错过这个机会。赶紧去看看吧! 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体