MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?

2024-06-15 13:12

本文主要是介绍MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 问题描述

我们在设计表结构的时候,设计规范里面有一条如下规则:

  • 对于可变长度的字段,在满足条件的前提下,尽可能使用较短的变长字段长度。

为什么这么规定?我在网上查了一下,主要基于两个方面

  • 基于存储空间的考虑

  • 基于性能的考虑

网上说Varchar(50)varchar(500)存储空间上是一样的,真的是这样吗?

基于性能考虑,是因为过长的字段会影响到查询性能?

本文我将带着这两个问题探讨验证一下

二.验证存储空间区别

1.准备两张表

CREATE TABLE `category_info_varchar_50` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(50) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='分类';CREATE TABLE `category_info_varchar_500` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(500) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB AUTO_INCREMENT=288135 DEFAULT CHARSET=utf8mb4 COMMENT='分类';

2.准备数据

给每张表插入相同的数据,为了凸显不同,插入100万条数据

DELIMITER $$
CREATE PROCEDURE batchInsertData(IN total INT)
BEGINDECLARE start_idx INT DEFAULT 1;DECLARE end_idx INT;DECLARE batch_size INT DEFAULT 500;DECLARE insert_values TEXT;SET end_idx = LEAST(total, start_idx + batch_size - 1);WHILE start_idx <= total DOSET insert_values = '';WHILE start_idx <= end_idx DOSET insert_values = CONCAT(insert_values, CONCAT('(\'name', start_idx, '\', 0, 0, 0, NOW(), NOW()),'));SET start_idx = start_idx + 1;END WHILE;SET insert_values = LEFT(insert_values, LENGTH(insert_values) - 1); -- Remove the trailing commaSET @sql = CONCAT('INSERT INTO category_info_varchar_50 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';');PREPARE stmt FROM @sql;EXECUTE stmt;SET @sql = CONCAT('INSERT INTO category_info_varchar_500 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';'); PREPARE stmt FROM @sql;EXECUTE stmt;SET end_idx = LEAST(total, start_idx + batch_size - 1);END WHILE;
END$$
DELIMITER ;CALL batchInsertData(1000000);

3.验证存储空间

查询第一张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_50'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

查询第二张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_500'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

4.结论

两张表在占用空间上确实是一样的,并无差别

三.验证性能区别

1.验证索引覆盖查询

select name from category_info_varchar_50 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_500 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_50 order by name;
-- 耗时0.370s
select name from category_info_varchar_500 order by name;
-- 耗时0.379s

通过索引覆盖查询性能差别不大

1.验证索引查询

select * from category_info_varchar_50 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_500 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时 0.011s -0.014s 
-- 增加 order by name 耗时 0.012s - 0.015sselect * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时  0.012s -0.014s 
-- 增加 order by name 耗时 0.014s - 0.017s

索引范围查询性能基本相同, 增加了order By后开始有一定性能差别;

3.验证全表查询和排序

全表无排序

图片

图片

全表有排序
select * from category_info_varchar_50 order by  name ;
--耗时 1.498s
select * from category_info_varchar_500 order by  name  ;
--耗时 4.875s

图片

图片

结论:

全表扫描无排序情况下,两者性能无差异,在全表有排序的情况下, 两种性能差异巨大;

分析原因
varchar50 全表执行sql分析

图片

我发现86%的时花在数据传输上,接下来我们看状态部分,关注Created_tmp_files和sort_merge_passes

图片

图片

Created_tmp_files为3

sort_merge_passes为95

varchar500 全表执行sql分析

图片

增加了临时表排序

图片

图片

Created_tmp_files 为 4

sort_merge_passes为645

关于sort_merge_passes, Mysql给出了如下描述:

Number of merge passes that the sort algorithm has had to do. If this value is large, you may want to increase the value of the sort_buffer_size.

其实sort_merge_passes对应的就是MySQL做归并排序的次数,也就是说,如果sort_merge_passes值比较大,说明sort_buffer和要排序的数据差距越大,我们可以通过增大sort_buffer_size或者让填入sort_buffer_size的键值对更小来缓解sort_merge_passes归并排序的次数。

四.最终结论

至此,我们不难发现,当我们最该字段进行排序操作的时候,Mysql会根据该字段的设计的长度进行内存预估, 如果设计过大的可变长度, 会导致内存预估的值超出sort_buffer_size的大小, 导致mysql采用磁盘临时文件排序,最终影响查询性能

这篇关于MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063549

相关文章

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本