MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?

2024-06-15 13:12

本文主要是介绍MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 问题描述

我们在设计表结构的时候,设计规范里面有一条如下规则:

  • 对于可变长度的字段,在满足条件的前提下,尽可能使用较短的变长字段长度。

为什么这么规定?我在网上查了一下,主要基于两个方面

  • 基于存储空间的考虑

  • 基于性能的考虑

网上说Varchar(50)varchar(500)存储空间上是一样的,真的是这样吗?

基于性能考虑,是因为过长的字段会影响到查询性能?

本文我将带着这两个问题探讨验证一下

二.验证存储空间区别

1.准备两张表

CREATE TABLE `category_info_varchar_50` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(50) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='分类';CREATE TABLE `category_info_varchar_500` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(500) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB AUTO_INCREMENT=288135 DEFAULT CHARSET=utf8mb4 COMMENT='分类';

2.准备数据

给每张表插入相同的数据,为了凸显不同,插入100万条数据

DELIMITER $$
CREATE PROCEDURE batchInsertData(IN total INT)
BEGINDECLARE start_idx INT DEFAULT 1;DECLARE end_idx INT;DECLARE batch_size INT DEFAULT 500;DECLARE insert_values TEXT;SET end_idx = LEAST(total, start_idx + batch_size - 1);WHILE start_idx <= total DOSET insert_values = '';WHILE start_idx <= end_idx DOSET insert_values = CONCAT(insert_values, CONCAT('(\'name', start_idx, '\', 0, 0, 0, NOW(), NOW()),'));SET start_idx = start_idx + 1;END WHILE;SET insert_values = LEFT(insert_values, LENGTH(insert_values) - 1); -- Remove the trailing commaSET @sql = CONCAT('INSERT INTO category_info_varchar_50 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';');PREPARE stmt FROM @sql;EXECUTE stmt;SET @sql = CONCAT('INSERT INTO category_info_varchar_500 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';'); PREPARE stmt FROM @sql;EXECUTE stmt;SET end_idx = LEAST(total, start_idx + batch_size - 1);END WHILE;
END$$
DELIMITER ;CALL batchInsertData(1000000);

3.验证存储空间

查询第一张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_50'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

查询第二张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_500'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

4.结论

两张表在占用空间上确实是一样的,并无差别

三.验证性能区别

1.验证索引覆盖查询

select name from category_info_varchar_50 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_500 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_50 order by name;
-- 耗时0.370s
select name from category_info_varchar_500 order by name;
-- 耗时0.379s

通过索引覆盖查询性能差别不大

1.验证索引查询

select * from category_info_varchar_50 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_500 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时 0.011s -0.014s 
-- 增加 order by name 耗时 0.012s - 0.015sselect * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时  0.012s -0.014s 
-- 增加 order by name 耗时 0.014s - 0.017s

索引范围查询性能基本相同, 增加了order By后开始有一定性能差别;

3.验证全表查询和排序

全表无排序

图片

图片

全表有排序
select * from category_info_varchar_50 order by  name ;
--耗时 1.498s
select * from category_info_varchar_500 order by  name  ;
--耗时 4.875s

图片

图片

结论:

全表扫描无排序情况下,两者性能无差异,在全表有排序的情况下, 两种性能差异巨大;

分析原因
varchar50 全表执行sql分析

图片

我发现86%的时花在数据传输上,接下来我们看状态部分,关注Created_tmp_files和sort_merge_passes

图片

图片

Created_tmp_files为3

sort_merge_passes为95

varchar500 全表执行sql分析

图片

增加了临时表排序

图片

图片

Created_tmp_files 为 4

sort_merge_passes为645

关于sort_merge_passes, Mysql给出了如下描述:

Number of merge passes that the sort algorithm has had to do. If this value is large, you may want to increase the value of the sort_buffer_size.

其实sort_merge_passes对应的就是MySQL做归并排序的次数,也就是说,如果sort_merge_passes值比较大,说明sort_buffer和要排序的数据差距越大,我们可以通过增大sort_buffer_size或者让填入sort_buffer_size的键值对更小来缓解sort_merge_passes归并排序的次数。

四.最终结论

至此,我们不难发现,当我们最该字段进行排序操作的时候,Mysql会根据该字段的设计的长度进行内存预估, 如果设计过大的可变长度, 会导致内存预估的值超出sort_buffer_size的大小, 导致mysql采用磁盘临时文件排序,最终影响查询性能

这篇关于MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063549

相关文章

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

native和static native区别

本文基于Hello JNI  如有疑惑,请看之前几篇文章。 native 与 static native java中 public native String helloJni();public native static String helloJniStatic();1212 JNI中 JNIEXPORT jstring JNICALL Java_com_test_g

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

Java 连接Sql sever 2008

Java 连接Sql sever 2008 /Sql sever 2008 R2 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; public class TestJDBC