用 C 语言实现求补码的运算

2024-06-15 06:20
文章标签 语言 实现 运算 补码

本文主要是介绍用 C 语言实现求补码的运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

缘起

前两天程序中需要求一堆参数的补码,一时犯懒,想从CSDN上搜一个勉强能用的代码借鉴一下,结果几乎没有搜到一个靠谱的!这种求补码的操作,用脚趾头想想也应该知道要用C或者C++的位运算来实现呀。结果搜到的一些实现方式竟然是把数值的二进制形式下的位,一位一位地进行操作!这简直离谱到家了,虽然这样做也能从功能上实现求补码的运算,但是性能肯定奇差呀。我们之所以用 C 或者 C++,通常都是对性能有一定的追求,如果你丝毫不在意性能,那你干嘛不去用 C# 或者 Java?

所以还是自己写了几个求补码的函数,分享在这里。本来觉得这是简单得不值一提的东西,但是看来并非人人都能把这件事情做对了。

之所以用 C 实现,而不是用 C++,是因为:(1) C 的函数可以在 C++ 中被无缝调用,反之则不行;(2) 用 C 实现,可以照顾到某些只能用 C 不能用 C++ 的嵌入式环境;(3) 这个实现过程实在是没有必要用到 C++ 的那些面向对象的特性,直接用 C 的过程式编程就足够了。我看到 CSDN 上有一个人实现求补码的过程,居然用到了 C++ 的 vector 容器,而且还对这个容器进行了动态地 insert 的操作,有这个必要吗??

从实际需求出发,我依次实现了对 8 位带符号整数、16 位带符号整数和 32 位带符号整数求补码的函数,以及它们的逆运算的函数。通常我们求补码的时候也不会希望求一个任意二进制字节流的补码,都是对实际的 8 位带符号整数、16 位带符号整数和 32 位带符号整数求补码进行求补码运算的。

原码、反码和补码的基础知识我就不在这里啰嗦了,CSDN 网站上介绍这些知识的文章多得是!我就直接上代码了。

程序实现

统一数据类型

对于 8 位整数、16 位整数和 32 位整数,为了照顾到不同的编译环境,我定义了一堆统一的数据类型,包括:

  1. 8位带符号和无符号整型:int8_t 与 uint8_t;
  2. 16位带符号和无符号整型:int16_t 与 uint16_t;
  3. 32位带符号和无符号整型:int32_t 与 uint32_t;

这些定义我放在了 datatypes.h 这个头文件里,通常我的 C / C++ 程序都会引用这个头文件:

#ifndef _INC_COMMON_datatypes_H
#define _INC_COMMON_datatypes_H#if _MSC_VER && _MSC_VER < 1700
typedef __int8              int8_t;
typedef __int16             int16_t;
typedef __int32             int32_t;
typedef __int64             int64_t;
typedef unsigned __int8     uint8_t;
typedef unsigned __int16    uint16_t;
typedef unsigned __int32    uint32_t;
typedef unsigned __int64    uint64_t;
#else
#include <stdint.h>
#endiftypedef float           float32_t;
typedef double          float64_t;
typedef unsigned char	byte;
typedef char            sbyte;#ifdef _WIN64
#define ssize_t __int64
#else
#define ssize_t long
#endif#endif // !_INC_COMMON_datatypes_H

求补码的函数

头文件里面的函数原型定义:

#include "datatypes.h"#ifdef __cplusplus
extern "C" {
#endif// 求 srcvalue 的8位补码, srcvalue 的取值范围是: [-128(-0x80), +127(+0x7F)]uint8_t I8_to_Complement(int8_t srcvalue);// 求 srcvalue 的16位补码, srcvalue 的取值范围是 : [-32768(-0x8000), +32767(+0x7FFF)]uint16_t I16_to_Complement(int16_t srcvalue);// 求 srcvalue 的32位补码, srcvalue 的取值范围是 : [-2147483648(-0x80000000), +2147483647(+0x7FFFFFFF)]uint32_t I32_to_Complement(int32_t srcvalue);#ifdef __cplusplus
} // ! extern "C"
#endif

函数实现:

// 求 srcvalue 的8位补码, srcvalue 的取值范围是: [-128(-0x80), +127(+0x7F)]
uint8_t I8_to_Complement(int8_t srcvalue)
{uint8_t compcode;if (srcvalue >= 0){compcode = (uint8_t)srcvalue;goto EXIT;}uint8_t tail = (uint8_t)(0 - srcvalue);tail = ~tail;compcode = tail + 1;EXIT:return compcode;
}// 求 srcvalue 的16位补码, srcvalue 的取值范围是 : [-32768(-0x8000), +32767(+0x7FFF)]
uint16_t I16_to_Complement(int16_t srcvalue)
{uint16_t compcode;if (srcvalue >= 0){compcode = (uint16_t)srcvalue;goto EXIT;}uint16_t tail = (uint16_t)(0 - srcvalue);tail = ~tail;compcode = tail + 1;EXIT:return compcode;
}// 求 srcvalue 的32位补码, srcvalue 的取值范围是 : [-2147483648(-0x80000000), +2147483647(+0x7FFFFFFF)]
uint32_t I32_to_Complement(int32_t srcvalue)
{uint32_t compcode;if (srcvalue >= 0){compcode = (uint32_t)srcvalue;goto EXIT;}uint32_t tail = (uint32_t)(0 - srcvalue);tail = ~tail;compcode = tail + 1;EXIT:return compcode;
}

根据补码求原值(即:求补码运算的逆运算)

头文件里面的函数原型定义:

#include "datatypes.h"#ifdef __cplusplus
extern "C" {
#endif// 求8位补码 compcode 的原值int8_t Complement_to_I8(uint8_t compcode);// 求16位补码 compcode 的原值int16_t Complement_to_I16(uint16_t compcode);// 求32位补码 compcode 的原值int32_t Complement_to_I32(uint32_t compcode);#ifdef __cplusplus
} // ! extern "C"
#endif

函数实现:

// 求8位补码 compcode 的原值
int8_t Complement_to_I8(uint8_t compcode)
{int8_t srcvalue;uint8_t head = compcode & 0x80;if (head == 0){srcvalue = (int8_t)compcode;goto EXIT;}uint8_t tail = compcode - 1;tail = ~tail;srcvalue = 0 - (int8_t)tail;EXIT:return srcvalue;
}// 求16位补码 compcode 的原值
int16_t Complement_to_I16(uint16_t compcode)
{int16_t srcvalue;uint16_t head = compcode & 0x8000;if (head == 0){srcvalue = (int16_t)compcode;goto EXIT;}uint16_t tail = compcode - 1;tail = ~tail;srcvalue = 0 - (int16_t)tail;EXIT:return srcvalue;
}// 求32位补码 compcode 的原值
int32_t Complement_to_I32(uint32_t compcode)
{int32_t srcvalue;uint32_t head = compcode & 0x80000000;if (head == 0){srcvalue = (int32_t)compcode;goto EXIT;}uint32_t tail = compcode - 1;tail = ~tail;srcvalue = 0 - (int32_t)tail;EXIT:return srcvalue;
}

程序验证

我找到了一个求原码、反码、补码的在线工具,亲测靠谱,给大家推荐一下网址:https://www.lddgo.net/convert/number-binary-code

我用 CUnit 写了一些单元测试,来验证我上述提供的这些求补码的函数及其逆运算函数的正确性。我就不在这里科普 CUnit 的基本用法了,直接贴相关的单元测试代码。

单元测试程序的头文件

#ifndef _INC_UNITTETST_CUNIT_COMMFUNC_TESTCASES_COMMONFUNC_TS_A001_Common_H
#define _INC_UNITTETST_CUNIT_COMMFUNC_TESTCASES_COMMONFUNC_TS_A001_Common_H#define TS_A001_Identifier "TS_A001: Bit Operation"#ifdef __cplusplus
extern "C" {
#endifint TS_A001_Setup(void);int TS_A001_Cleanup(void);// 验证 I8_to_Complement 函数对输入参数`srcvalue`为0或正整数时工作正常void TC0001_I8_to_Complement_PositiveInteger();// 验证 I8_to_Complement 函数对输入参数`srcvalue`为负整数时工作正常void TC0002_I8_to_Complement_NegativeInteger();// 验证 Complement_to_I8 函数对 TC0001 和 TC0002 中的正/负整数求得的补码,都能逆向求得其原始值(正/负整数)void TC0003_Complement_to_I8();// 验证 I16_to_Complement 函数对输入参数`srcvalue`为0或正整数时工作正常void TC0004_I16_to_Complement_PositiveInteger();// 验证 I16_to_Complement 函数对输入参数`srcvalue`为负整数时工作正常void TC0005_I16_to_Complement_NegativeInteger();// 验证 Complement_to_I16 函数对 TC0004 和 TC0005 中的正/负整数求得的补码,都能逆向求得其原始值(正/负整数)void TC0006_Complement_to_I16();// 验证 I32_to_Complement 函数对输入参数`srcvalue`为0或正整数时工作正常void TC0007_I32_to_Complement_PositiveInteger();// 验证 I32_to_Complement 函数对输入参数`srcvalue`为负整数时工作正常void TC0008_I32_to_Complement_NegativeInteger();// 验证 Complement_to_I32 函数对 TC0007 和 TC0008 中的正/负整数求得的补码,都能逆向求得其原始值(正/负整数)void TC0009_Complement_to_I32();#ifdef __cplusplus
} // ! extern "C"
#endif#endif // !_INC_UNITTETST_CUNIT_COMMFUNC_TESTCASES_COMMONFUNC_TS_A001_Common_H

单元测试程序的测试用例实现

#include "CUnit/CUnit.h"
#include "Common/CommonFuncs.h"#include "TS_A001_Common.h"// ----------------------------------------------------------------------
// Public functions implementation
// ----------------------------------------------------------------------int TS_A001_Setup(void)
{return CUE_SUCCESS;
}int TS_A001_Cleanup(void)
{return CUE_SUCCESS;
}// ========================================================
// 参考:在线原码/反码/补码计算器
// https://www.lddgo.net/convert/number-binary-code
// ========================================================// 验证 I8_to_Complement 函数对输入参数`srcvalue`为0或正整数时工作正常
void TC0001_I8_to_Complement_PositiveInteger()
{
#define TC0001_VARS_COUNT 3int8_t SrcValues[TC0001_VARS_COUNT] = {0, 1, 127};uint8_t CompCodes[TC0001_VARS_COUNT] = {0, 1, 0x7F};for (int idx = 0; idx < TC0001_VARS_COUNT; idx++){uint8_t compcode = I8_to_Complement(SrcValues[idx]);CU_ASSERT_EQUAL(compcode, CompCodes[idx]);}
}// 验证 I8_to_Complement 函数对输入参数`srcvalue`为负整数时工作正常
void TC0002_I8_to_Complement_NegativeInteger()
{
#define TC0002_VARS_COUNT 6int8_t SrcValues[TC0002_VARS_COUNT] = {-1, -3, -63, -64, -127, -128};uint8_t CompCodes[TC0002_VARS_COUNT] = {0xFF, 0xFD, 0xC1, 0xC0, 0x81, 0x80};for (int idx = 0; idx < TC0002_VARS_COUNT; idx++){uint8_t compcode = I8_to_Complement(SrcValues[idx]);CU_ASSERT_EQUAL(compcode, CompCodes[idx]);}
}// 验证 Complement_to_I8 函数对 TC0001 和 TC0002 中的正/负整数求得的补码,都能逆向求得其原始值(正/负整数)
void TC0003_Complement_to_I8()
{
#define TC0003_VARS_COUNT 9int8_t SrcValues[TC0003_VARS_COUNT] = {0, 1, 127,-1, -3, -63, -64, -127, -128};uint8_t CompCodes[TC0003_VARS_COUNT] = {0, 1, 0x7F,0xFF, 0xFD, 0xC1, 0xC0, 0x81, 0x80};for (int idx = 0; idx < TC0003_VARS_COUNT; idx++){int8_t srcValue = Complement_to_I8(CompCodes[idx]);CU_ASSERT_EQUAL(srcValue, SrcValues[idx]);}
}// 验证 I16_to_Complement 函数对输入参数`srcvalue`为0或正整数时工作正常
void TC0004_I16_to_Complement_PositiveInteger()
{
#define TC0004_VARS_COUNT 7int16_t SrcValues[TC0004_VARS_COUNT] = {0, 1, 127, 128, 255,256, 32767};uint16_t CompCodes[TC0004_VARS_COUNT] = {0, 1, 0x7F, 0x80, 0xFF,0x0100, 0x7FFF};for (int idx = 0; idx < TC0004_VARS_COUNT; idx++){uint16_t compcode = I16_to_Complement(SrcValues[idx]);CU_ASSERT_EQUAL(compcode, CompCodes[idx]);}
}// 验证 I16_to_Complement 函数对输入参数`srcvalue`为负整数时工作正常
void TC0005_I16_to_Complement_NegativeInteger()
{
#define TC0005_VARS_COUNT 12int16_t SrcValues[TC0005_VARS_COUNT] = {-1, -3, -63, -64, -127, -128, -129, -255, -256,-257,-32767, -32768};uint16_t CompCodes[TC0005_VARS_COUNT] = {0xFFFF, 0xFFFD, 0xFFC1, 0xFFC0, 0xFF81, 0xFF80, 0xFF7F, 0xFF01, 0xFF00,0xFEFF,0x8001, 0x8000};for (int idx = 0; idx < TC0005_VARS_COUNT; idx++){uint16_t compcode = I16_to_Complement(SrcValues[idx]);CU_ASSERT_EQUAL(compcode, CompCodes[idx]);}
}// 验证 Complement_to_I16 函数对 TC0004 和 TC0005 中的正/负整数求得的补码,都能逆向求得其原始值(正/负整数)
void TC0006_Complement_to_I16()
{
#define TC0006_VARS_COUNT 19int16_t SrcValues[TC0006_VARS_COUNT] = {0, 1, 127, 128, 255,256, 32767,-1, -3, -63, -64, -127, -128, -129, -255, -256,-257,-32767, -32768};uint16_t CompCodes[TC0006_VARS_COUNT] = {0, 1, 0x7F, 0x80, 0xFF,0x0100, 0x7FFF,0xFFFF, 0xFFFD, 0xFFC1, 0xFFC0, 0xFF81, 0xFF80, 0xFF7F, 0xFF01, 0xFF00,0xFEFF,0x8001, 0x8000};for (int idx = 0; idx < TC0006_VARS_COUNT; idx++){int16_t srcValue = Complement_to_I16(CompCodes[idx]);CU_ASSERT_EQUAL(srcValue, SrcValues[idx]);}
}// 验证 I32_to_Complement 函数对输入参数`srcvalue`为0或正整数时工作正常
void TC0007_I32_to_Complement_PositiveInteger()
{
#define TC0007_VARS_COUNT 3int32_t SrcValues[TC0007_VARS_COUNT] = {0, 1, 0x7FFFFFFF};uint32_t CompCodes[TC0007_VARS_COUNT] = {0, 1, 0x7FFFFFFF};for (int idx = 0; idx < TC0007_VARS_COUNT; idx++){uint32_t compcode = I32_to_Complement(SrcValues[idx]);CU_ASSERT_EQUAL(compcode, CompCodes[idx]);}
}// 验证 I32_to_Complement 函数对输入参数`srcvalue`为负整数时工作正常
#if defined(_WIN32) && defined(_MSC_VER)
#pragma warning(disable: 4146)
#endif
void TC0008_I32_to_Complement_NegativeInteger()
{
#define TC0008_VARS_COUNT 4// 2147483647(DEC): 0x7FFFFFFF// 2147483648(DEC): 0x80000000int32_t SrcValues[TC0008_VARS_COUNT] = {-1, -2, -2147483647, -2147483648};uint32_t CompCodes[TC0008_VARS_COUNT] = {0xFFFFFFFF, 0xFFFFFFFE, 0x80000001, 0x80000000};for (int idx = 0; idx < TC0008_VARS_COUNT; idx++){uint32_t compcode = I32_to_Complement(SrcValues[idx]);CU_ASSERT_EQUAL(compcode, CompCodes[idx]);}
}// 验证 Complement_to_I32 函数对 TC0007 和 TC0008 中的正/负整数求得的补码,都能逆向求得其原始值(正/负整数)
#if defined(_WIN32) && defined(_MSC_VER)
#pragma warning(disable: 4146)
#endif
void TC0009_Complement_to_I32()
{
#define TC0009_VARS_COUNT 7int32_t SrcValues[TC0009_VARS_COUNT] = {0, 1, 0x7FFFFFFF,-1, -2, -2147483647, -2147483648};uint32_t CompCodes[TC0009_VARS_COUNT] = {0, 1, 0x7FFFFFFF,0xFFFFFFFF, 0xFFFFFFFE, 0x80000001, 0x80000000};for (int idx = 0; idx < TC0009_VARS_COUNT; idx++){int32_t srcValue = Complement_to_I32(CompCodes[idx]);CU_ASSERT_EQUAL(srcValue, SrcValues[idx]);}
}

单元测试的运行结果

通过单元测试,验证了程序的正确性。截图如下:
在这里插入图片描述
在这里插入图片描述

这篇关于用 C 语言实现求补码的运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062660

相关文章

Qt把文件夹从A移动到B的实现示例

《Qt把文件夹从A移动到B的实现示例》本文主要介绍了Qt把文件夹从A移动到B的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录如何移动一个文件? 如何移动文件夹(包含里面的全部内容):如何删除文件夹:QT 文件复制,移动(

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

使用mvn deploy命令上传jar包的实现

《使用mvndeploy命令上传jar包的实现》本文介绍了使用mvndeploy:deploy-file命令将本地仓库中的JAR包重新发布到Maven私服,文中通过示例代码介绍的非常详细,对大家的学... 目录一、背景二、环境三、配置nexus上传账号四、执行deploy命令上传包1. 首先需要把本地仓中要

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

java导出pdf文件的详细实现方法

《java导出pdf文件的详细实现方法》:本文主要介绍java导出pdf文件的详细实现方法,包括制作模板、获取中文字体文件、实现后端服务以及前端发起请求并生成下载链接,需要的朋友可以参考下... 目录使用注意点包含内容1、制作pdf模板2、获取pdf导出中文需要的文件3、实现4、前端发起请求并生成下载链接使

C语言中的浮点数存储详解

《C语言中的浮点数存储详解》:本文主要介绍C语言中的浮点数存储详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、首先明确一个概念2、接下来,讲解C语言中浮点型数存储的规则2.1、可以将上述公式分为两部分来看2.2、问:十进制小数0.5该如何存储?2.3 浮点

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

Linux下修改hostname的三种实现方式

《Linux下修改hostname的三种实现方式》:本文主要介绍Linux下修改hostname的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下修改ho编程stname三种方式方法1:修改配置文件方法2:hFvEWEostnamectl命