多线程编程-条件变量pthread_cond_t

2024-06-15 03:08

本文主要是介绍多线程编程-条件变量pthread_cond_t,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  有的时候仅仅依靠锁住共享资源来使用它是不够的。有时候共享资源只有某些状态的时候才能够使用。比方说,某个线程如果要从堆栈中读取数据,那么如果栈中没有数据就必须等待数据被压栈。这种情况下的同步使用互斥锁

是不够的。另一种同步的方式--条件变量,就可以使用在这种情况下。

条件变量的使用总是和互斥锁及共享资源联系在一起的。线程首先锁住互斥锁,然后检验共享资源的状态是否处于可使用的状态。如果不是,那么线程就要等待条件变量。要指向这样的操作就必须在等待的时候将互斥锁解锁,以

便其他线程可以访问共享资源并改变其状态。它还得保证从等到得线程返回时互斥体是被上锁得。当另一个线程改变了共享资源的状态时,它就要通知正在等待条件变量的线程,使之重新变回被互斥锁阻塞的线程。

[cpp] view plain copy print ?
  1. #include <pthread.h>
  2. #include <stdio.h>
  3. #include <stdlib.h>
  4. pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/
  5. pthread_cond_t cond = PTHREAD_COND_INITIALIZER;/*初始化条件变量*/
  6. void *thread1(void *);
  7. void *thread2(void *);
  8. int i=1;
  9. int main(void)
  10. {
  11. pthread_t t_a;
  12. pthread_t t_b;
  13. pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/
  14. pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/
  15. pthread_join(t_a, NULL);/*等待进程t_a结束*/
  16. pthread_join(t_b, NULL);/*等待进程t_b结束*/
  17. pthread_mutex_destroy(&mutex);
  18. pthread_cond_destroy(&cond);
  19. exit(0);
  20. }
  21. void *thread1(void *junk)
  22. {
  23. for(i=1;i<=6;i++)
  24. {
  25. pthread_mutex_lock(&mutex);/*锁住互斥量*/
  26. printf("thread1: lock %d/n", __LINE__);
  27. if(i%3==0){
  28. printf("thread1:signal 1 %d/n", __LINE__);
  29. pthread_cond_signal(&cond);/*条件改变,发送信号,通知t_b进程*/
  30. printf("thread1:signal 2 %d/n", __LINE__);
  31. sleep(1);
  32. }
  33. pthread_mutex_unlock(&mutex);/*解锁互斥量*/
  34. printf("thread1: unlock %d/n/n", __LINE__);
  35. sleep(1);
  36. }
  37. }
  38. void *thread2(void *junk)
  39. {
  40. while(i<6)
  41. {
  42. pthread_mutex_lock(&mutex);
  43. printf("thread2: lock %d/n", __LINE__);
  44. if(i%3!=0){
  45. printf("thread2: wait 1 %d/n", __LINE__);
  46. pthread_cond_wait(&cond,&mutex);/*解锁mutex,并等待cond改变*/
  47. printf("thread2: wait 2 %d/n", __LINE__);
  48. }
  49. pthread_mutex_unlock(&mutex);
  50. printf("thread2: unlock %d/n/n", __LINE__);
  51. sleep(1);
  52. }
  53. }
[cpp] view plain copy print ?
  1. #include <pthread.h>
  2. #include <stdio.h>
  3. #include <stdlib.h>
  4. pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/
  5. pthread_cond_t cond = PTHREAD_COND_INITIALIZER;/*初始化条件变量*/
  6. void *thread1(void *);
  7. void *thread2(void *);
  8. int i=1;
  9. int main(void)
  10. {
  11. pthread_t t_a;
  12. pthread_t t_b;
  13. pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/
  14. pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/
  15. pthread_join(t_a, NULL);/*等待进程t_a结束*/
  16. pthread_join(t_b, NULL);/*等待进程t_b结束*/
  17. pthread_mutex_destroy(&mutex);
  18. pthread_cond_destroy(&cond);
  19. exit(0);
  20. }
  21. void *thread1(void *junk)
  22. {
  23. for(i=1;i<=6;i++)
  24. {
  25. pthread_mutex_lock(&mutex);/*锁住互斥量*/
  26. printf("thread1: lock %d/n", __LINE__);
  27. if(i%3==0){
  28. printf("thread1:signal 1 %d/n", __LINE__);
  29. pthread_cond_signal(&cond);/*条件改变,发送信号,通知t_b进程*/
  30. printf("thread1:signal 2 %d/n", __LINE__);
  31. sleep(1);
  32. }
  33. pthread_mutex_unlock(&mutex);/*解锁互斥量*/
  34. printf("thread1: unlock %d/n/n", __LINE__);
  35. sleep(1);
  36. }
  37. }
  38. void *thread2(void *junk)
  39. {
  40. while(i<6)
  41. {
  42. pthread_mutex_lock(&mutex);
  43. printf("thread2: lock %d/n", __LINE__);
  44. if(i%3!=0){
  45. printf("thread2: wait 1 %d/n", __LINE__);
  46. pthread_cond_wait(&cond,&mutex);/*解锁mutex,并等待cond改变*/
  47. printf("thread2: wait 2 %d/n", __LINE__);
  48. }
  49. pthread_mutex_unlock(&mutex);
  50. printf("thread2: unlock %d/n/n", __LINE__);
  51. sleep(1);
  52. }
  53. }

编译:

[X61@horizon threads]$ gcc thread_cond.c -lpthread -o tcd

以下是程序运行结果:

[X61@horizon threads]$ ./tcd
thread1: lock 30
thread1: unlock 40

thread2: lock 52
thread2: wait 1 55
thread1: lock 30
thread1: unlock 40

thread1: lock 30
thread1:signal 1 33
thread1:signal 2 35
thread1: unlock 40

thread2: wait 2 57
thread2: unlock 61

thread1: lock 30
thread1: unlock 40

thread2: lock 52
thread2: wait 1 55
thread1: lock 30
thread1: unlock 40

thread1: lock 30
thread1:signal 1 33
thread1:signal 2 35
thread1: unlock 40

thread2: wait 2 57
thread2: unlock 61

这里的两个关键函数就在pthread_cond_wait和pthread_cond_signal函数。

本例中:

线程一先执行,获得mutex锁,打印,然后释放mutex锁,然后阻塞自己1秒。

线程二此时和线程一应该是并发的执行
,这里是一个要点,为什么说是线程此时是并发的执行,因为此时不做任何干涉的话,是没有办法确定是线程一先获得执行还是线程二先获得执行,到底那个线程先获得执行,取决于操作系统的调度,想刻意的让线程2先执行,可以让线程2一出来,先sleep一秒。
这里并发执行的情况是,线程一先进入循环,然后获得锁,此时估计线程二执行,阻塞在
pthread_mutex_lock(&mutex);
这行语句中,直到线程1释放mutex锁
pthread_mutex_unlock(&mutex);/*解锁互斥量*/
然后线程二得已执行,获取metux锁,满足if条件,到pthread_cond_wait (&cond,&mutex);/*等待*/
这里的线程二阻塞,不仅仅是等待cond变量发生改变,同时释放mutex锁 ,因为当时看书没有注意,所以这里卡了很久。
mutex锁释放后,线程1终于获得了mutex锁,得已继续运行,当线程1的if(i%3==0)的条件满足后,通过pthread_cond_signal发送信号,告诉等待cond的变量的线程(这个情景中是线程二),cond条件变量已经发生了改变。

不过此时线程二并没有立即得到运行 ,因为线程二还在等待mutex锁的释放,所以线程一继续往下走,直到线程一释放mutex锁,线程二才能停止等待,打印语句,然后往下走通过pthread_mutex_unlock(&mutex)释放mutex锁,进入下一个循环。


这篇关于多线程编程-条件变量pthread_cond_t的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062265

相关文章

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

多线程解析报表

假如有这样一个需求,当我们需要解析一个Excel里多个sheet的数据时,可以考虑使用多线程,每个线程解析一个sheet里的数据,等到所有的sheet都解析完之后,程序需要提示解析完成。 Way1 join import java.time.LocalTime;public class Main {public static void main(String[] args) thro

Java并发编程之——BlockingQueue(队列)

一、什么是BlockingQueue BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种: 1. 当队列满了的时候进行入队列操作2. 当队列空了的时候进行出队列操作123 因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空

Java 多线程概述

多线程技术概述   1.线程与进程 进程:内存中运行的应用程序,每个进程都拥有一个独立的内存空间。线程:是进程中的一个执行路径,共享一个内存空间,线程之间可以自由切换、并发执行,一个进程最少有一个线程,线程实际数是在进程基础之上的进一步划分,一个进程启动之后,进程之中的若干执行路径又可以划分成若干个线程 2.线程的调度 分时调度:所有线程轮流使用CPU的使用权,平均分配时间抢占式调度