JDK9 ConcurrentHashMap实现原理(一)

2024-06-15 00:58

本文主要是介绍JDK9 ConcurrentHashMap实现原理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • JDK9 ConcurrentHashMap实现原理(一)
    • 数据结构
    • 私有属性
      • 静态属性
    • 相关节点
    • 构造器
    • Hash值计算
    • 添加元素
    • 初始化数组

JDK9 ConcurrentHashMap实现原理(一)

数据结构

JDK1.7中采用Segment + HashEntry的方式进行实现.使用ReentrantLock实现加锁操作。
JDK1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现.结构类似于HashMap,数组+链表+红黑树。
在这里插入图片描述

私有属性

静态属性

  • private static final int MAXIMUM_CAPACITY = 1 << 30;
    最大的容量,必须为2的平方。

  • private static final int DEFAULT_CAPACITY = 16;
    默认的初始容量,也是2的平方

  • static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    最大的数组大小。

  • private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    默认的并发等级,只在writeObject中用了。

  • private static final float LOAD_FACTOR = 0.75f;
    加载因子,只在writeObject中用了。不像HashMap中的用法。

  • static final int TREEIFY_THRESHOLD = 8;
    当某个数组位置上的节点数量超过8时,则将单链表结构转换为红黑树结构。

  • static final int UNTREEIFY_THRESHOLD = 6;
    当某个数组位置上的节点数量小于6时,则将红黑树结构转换为单链表结构。

  • static final int MIN_TREEIFY_CAPACITY = 64;
    在转换成红黑树之前,还需要检测当前table的大小是否大于等于MIN_TREEIFY_CAPACITY,小于不会转换成红黑树,而是重新扩展table的大小。

  • private static final int MIN_TRANSFER_STRIDE = 16;

  • private static final int RESIZE_STAMP_BITS = 16;

  • private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
    扩容时可利用的最大线程

  • private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

  • static final int MOVED = -1; // hash for forwarding nodes
    static final int TREEBIN = -2; // hash for roots of trees
    static final int RESERVED = -3; // hash for transient reservations
    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

  • static final int NCPU = Runtime.getRuntime().availableProcessors();
    当前机器的CPU的核心处理器数量,transfer扩容时会用到。

相关节点

  • Node:该类用于构造table[],只读节点(不提供修改方法)。是一个单链表结构。
  static class Node<K,V> implements Map.Entry<K,V> {//节点的哈希值final int hash;//建final K key;//值volatile V val;//指向下一个节点,说明是单链表结构volatile Node<K,V> next;Node(int hash, K key, V val) {this.hash = hash;this.key = key;this.val = val;}Node(int hash, K key, V val, Node<K,V> next) {this(hash, key, val);this.next = next;}public final K getKey()     { return key; }public final V getValue()   { return val; }public final int hashCode() { return key.hashCode() ^ val.hashCode(); }public final String toString() {return Helpers.mapEntryToString(key, val);}public final V setValue(V value) {throw new UnsupportedOperationException();}public final boolean equals(Object o) {Object k, v, u; Map.Entry<?,?> e;return ((o instanceof Map.Entry) &&(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&(v = e.getValue()) != null &&(k == key || k.equals(key)) &&(v == (u = val) || v.equals(u)));}/*** Virtualized support for map.get(); overridden in subclasses.*/Node<K,V> find(int h, Object k) {Node<K,V> e = this;if (k != null) {do {K ek;if (e.hash == h &&((ek = e.key) == k || (ek != null && k.equals(ek))))return e;} while ((e = e.next) != null);}return null;}}
  • TreeBin:红黑树结构。
  • TreeNode:红黑树节点。
static final class TreeNode<K,V> extends Node<K,V> {//父节点TreeNode<K,V> parent;  // red-black tree links//左节点TreeNode<K,V> left;//右节点TreeNode<K,V> right;//TreeNode<K,V> prev;    // needed to unlink next upon deletion//节点的颜色boolean red;TreeNode(int hash, K key, V val, Node<K,V> next,TreeNode<K,V> parent) {super(hash, key, val, next);this.parent = parent;}Node<K,V> find(int h, Object k) {return findTreeNode(h, k, null);}//使用this这个树形节点作为根节点,寻找目标节点。final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {}}
  • ForwardingNode:临时节点(扩容时使用)。

构造器

  • 无参构造器
 public ConcurrentHashMap() {}

指定初始容量

 public ConcurrentHashMap(int initialCapacity) {if (initialCapacity < 0)throw new IllegalArgumentException();int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?MAXIMUM_CAPACITY :tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));this.sizeCtl = cap;
}

这里使用tableSizeFor将输入的容量转换为2的平方。

private static final int tableSizeFor(int c) {int n = c - 1;n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}

输入容量:3 , 输出:4;
输入容量:11 , 输出:16;
输入容量:17 , 输出:32;
不确定这里为什么要这么处理(initialCapacity + (initialCapacity >>> 1) + 1));虽然直接initialCapacity的结果也是一样的。

  • 还可以指定加载因子和concurrencyLevel。
    可以看到这两个参数在新版本中只是在初始化才会用到,其他地方不会用到,注意这里和HashMap的区别。
 public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (initialCapacity < concurrencyLevel)   // Use at least as many binsinitialCapacity = concurrencyLevel;   // as estimated threadslong size = (long)(1.0 + (long)initialCapacity / loadFactor);int cap = (size >= (long)MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : tableSizeFor((int)size);this.sizeCtl = cap;
}
  • 和大多数集合一样,都可以由其他集合元素作为初始元素。
 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {this.sizeCtl = DEFAULT_CAPACITY;putAll(m);}

Hash值计算

可以看出 计算出的hash都是正值

static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;
}

添加元素

1.key值和value都不能null
2.onlyIfAbsent=true : 如果当前key值已经存在,则不 更新为新值, false: 不管什么情况都会更新为新值。

 final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();//获取hash值int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {Node<K,V> f; int n, i, fh; K fk; V fv;//如果table为空,说明之前没有放入元素if (tab == null || (n = tab.length) == 0)tab = initTable();//如果要插入的位置没有节点数据     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果数组的桶是空的,则尝试插入数据,直到成功才中断当前循环,使用CAS算法if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))break;                   // no lock when adding to empty bin}//到此插入数据成功//如果在插入的时候,节点是一个forwordingNode状态,表示正在扩容,那么当前线程进行帮助扩容            else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else if (//如果onlyIfAbsent为true,也就是只要key已经存在,就不写入新值onlyIfAbsent //扩容已经结束,fh 和传入key的值一样&&   fh == hash   // check first node//&& ((fk = f.key) == key || fk != null && key.equals(fk)) && (fv = f.val) != null)return fv;else {V oldVal = null;synchronized (f) {if (tabAt(tab, i) == f) {if (fh >= 0) {binCount = 1;for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key, value);break;}}}else if (f instanceof TreeBin) {Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}else if (f instanceof ReservationNode)throw new IllegalStateException("Recursive update");}}if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);return null;
}

初始化数组

private final Node<K,V>[] initTable() {Node<K,V>[] tab; int sc;while ((tab = table) == null || tab.length == 0) {if ((sc = sizeCtl) < 0)Thread.yield(); // lost initialization race; just spinelse if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {try {if ((tab = table) == null || tab.length == 0) {int n = (sc > 0) ? sc : DEFAULT_CAPACITY;@SuppressWarnings("unchecked")Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];table = tab = nt;sc = n - (n >>> 2);}} finally {sizeCtl = sc;}break;}}return tab;
}

未完待续。。。。。。。。。。

这篇关于JDK9 ConcurrentHashMap实现原理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061985

相关文章

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的