05-5.2.1_1 二叉树的定义和基本术语

2024-06-14 22:44

本文主要是介绍05-5.2.1_1 二叉树的定义和基本术语,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 👋 Hi, I’m @Beast Cheng
  • 👀 I’m interested in photography, hiking, landscape…
  • 🌱 I’m currently learning python, javascript, kotlin…
  • 📫 How to reach me --> 458290771@qq.com

喜欢《数据结构》部分笔记的小伙伴可以订阅专栏,今后还会不断更新。🧑‍💻
此外,《程序员必备技能》专栏日后会逐步更新,感兴趣的小伙伴可以点一下订阅、收藏、关注!🚀
谢谢大家!🙏

二叉树的基本概念

二叉树是 n ( n ≥ 0 ) n(n\geq 0) n(n0) 个结点的有限集合:

  1. 或者为空二叉树,即 n = 0 n=0 n=0
  2. 或者由一个根节点和两个互不相交的被称为根的左子树右子树组成。左子树和右子树又分别是一棵二叉树
    特点:
  3. 每个结点至多只有两棵子树
  4. 左右子树不能颠倒(二叉树是有序树

几个特殊的二叉树

满二叉树

满二叉树:一棵高度为 h,且含有 2 h − 1 2^h-1 2h1 个结点的二叉树
特点:

  1. 只有最后一层有叶子结点
  2. 不存在度为 1 的结点
  3. 按层序从 1 开始编号,结点 i 的左孩子为 2i,右孩子为 2i+1,结点 i 的父结点为 i/2(如果有的话)

完全二叉树

完全二叉树:当且仅当其每个结点都与高度为 h 的满二叉树中编号 1~n 的结点一一对应时,称为完全二叉树
特点:

  1. 只有最后两层可能有叶子结点
  2. 只可能有一个度为 1 的结点
  3. 满二叉树的第三点相同
  4. i ≤ n 2 i \leq \frac{n}{2} i2n 为分支结点, i > n 2 i > \frac{n}{2} i>2n 为叶子结点
    对于完全二叉树来说,如果某结点有一个孩子,那么这个孩子一定是左孩子而不是右孩子

二叉排序树

二叉排序树:一棵二叉树或者是空二叉树,或者是具有如下性质的二叉树:

  • 左子树 上的所有结点的 关键字小于 根结点的关键字;
  • 右子树 上的所有结点的 关键字大于 根结点的关键字;
  • 左子树和右子树又各是一棵二叉排序树
    二叉排序树可以用于元素的排序、搜索

平衡二叉树

平衡二叉树:树上任一结点的左子树右子树深度之差不超过 1
如:左子树深度 = 2,右子树深度 = 3,那么就是平衡二叉树
平衡二叉树能有更高的搜索效率

这篇关于05-5.2.1_1 二叉树的定义和基本术语的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061708

相关文章

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

Java 多线程的基本方式

Java 多线程的基本方式 基础实现两种方式: 通过实现Callable 接口方式(可得到返回值):

Java基础回顾系列-第一天-基本语法

基本语法 Java基础回顾系列-第一天-基本语法基础常识人机交互方式常用的DOS命令什么是计算机语言(编程语言) Java语言简介Java程序运行机制Java虚拟机(Java Virtual Machine)垃圾收集机制(Garbage Collection) Java语言的特点面向对象健壮性跨平台性 编写第一个Java程序什么是JDK, JRE下载及安装 JDK配置环境变量 pathHe