详解 Flink CDC 的介绍和入门案例

2024-06-14 15:28

本文主要是介绍详解 Flink CDC 的介绍和入门案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Flink CDC 简介

1. CDC 介绍

​ CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

2. CDC 种类

基于查询的 CDC基于 Binlog 的 CDC
开源产品Sqoop、Kafka JDBC SourceCanal、Maxwell、Debezium
执行模式BatchStreaming
是否可以捕获所有数据变化
延迟性高延迟低延迟
是否增加数据库压力

3. Flink CDC 介绍

​ Flink CDC 是一个内置了 Debezium 的基于 Binlog 的可以直接从 MySQL、PostgreSQL 等数据库直接读取全量数据和增量变更数据的 source 组件。开源地址:https://github.com/ververica/flink-cdc-connectors

二、Flink CDC 案例实操

1. DataStream 实现

1.1 导入依赖
<dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.12.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>1.12.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>1.12.0</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>5.1.49</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.12</artifactId><version>1.12.0</version></dependency><dependency><groupId>com.ververica</groupId><artifactId>flink-connector-mysql-cdc</artifactId><version>2.0.0</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.75</version></dependency>
</dependencies>
<build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-assembly-plugin</artifactId><version>3.0.0</version><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins>
</build>
1.2 编写程序代码
public class FlinkCDC {public static void main(String[] args) throws Exception {//1. 创建 Flink 执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);//Flink-CDC 将读取 binlog 的位置信息以状态的方式保存在 CK,如果想要做到断点续传,需要从 Checkpoint 或者 Savepoint 启动程序//1.1 开启 Checkpoint,每隔 5 秒钟做一次 CKenv.enableCheckpointing(5000L);//1.2 指定 CK 的一致性语义env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);//1.3 设置任务关闭的时候保留最后一次 CK 数据env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);//1.4 指定从 CK 自动重启策略env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L));//1.5 设置状态后端env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/flinkCDC"));//1.6 设置访问 HDFS 的用户名System.setProperty("HADOOP_USER_NAME", "lgb");//2. 创建 FlinkCDC Source/*StartupOptions 有 5 种类型:1. initial:默认,先使用查询的方式读取表中所有的数据,然后再从 binlog 的最近位置监控读取2. earliest:从 binlog 最开始的位置读取,要求在数据库创建之前就开启了 binlog3. latest:从 binlog 的最近位置监控读取4. specificOffset:从 binlog 的指定位置读取5. timestamp:从 binlog 的指定时间戳读取*/DebeziumSourceFunction<String> mysqlSource = MysqlSource.<String>builder().hostname("hadoop102") //Mysql所在主机名.port(3306) //mysql端口号.username("root") //登录mysql用户名.password("123456") //登录mysql密码.databaseList("cdc_test") //监控的数据库列表,可变参数.tableList("cdc_test.user_info") //监控的数据表,不指定则监控数据库下所有表.deserializer(new StringDebeziumDeserializationSchema()) //反序列化器.startupOptions(StartupOptions.initial()) //指定读取策略.build();//3. 通过 FlinkCDC Source 创建 DataStreamDataStream<String> dataStream = env.addSource(mysqlSource);//4. 打印输出流dataStream.print();//5. 启动任务env.execute("FlinkCDC");}
}
1.3 测试
1.3.1 本地测试
  • 开启 MySQL Binlog 并重启 MySQL
  • 在 Mysql 中创建对应的数据库和数据表并插入一条数据
  • 启动 FlinkCDC 程序,查看控制台结果,可以看到通过查询的方式获取到了数据表里的所有数据
  • 在数据表中进行增删改操作,查看程序控制台输出结果
1.3.2 集群测试
  • 将 FlinkCDC 程序进行打包并上传到集群

  • 启动 Hadoop、zookeeper 和 Flink 集群

  • 运行 FlinkCDC 程序

    bin/flink run -c com.atguigu.FlinkCDC flink-1.0-SNAPSHOT-jar-with-dependencies.jar
    
  • 给当前的 Flink 程序创建 Savepoint

    bin/flink savepoint [JobId] hdfs://hadoop102:8020/flink/save
  • 停止 FlinkCDC 程序

  • 在Mysql数据表中进行增删改操作

  • 从 Savepoint 重启程序查看程序输出结果

    bin/flink run -s hdfs://hadoop102:8020/flink/save/[JobId] -c com.atguigu.FlinkCDC flink-1.0-SNAPSHOT-jar-with-dependencies.jar
    

2. Flink SQL 实现

2.0.0 版本的 FlinkCDC 通过 FlinkSQL 实现需要 1.13+ 版本的 Flink 支持

public class FlinkSQLCDC {public static void main(String[] args) throws Exception {//1. 创建 Flink 执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);//2. 创建 FlinkSQL 表环境StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);//3. 配置 FlinkSQLCDC 监控单表(只能监控单表),不需要指定反序列化器,读取模式只有 initial 和 latest-offsettableEnv.executeSql("create table user_info (" +"id String primary key, name String, sex String) with (" +" 'connector' = 'mysql-cdc'," +" 'scan.startup.mode' = 'initial'," +" 'hostname' = 'hadoop102'," +" 'port' = '3306'," +" 'username' = 'root'," +" 'password' = '123456'," +" 'database-name' = 'cdc_test'," +" 'table-name' = 'user_info'" +")");//4. 查询输出表中数据Table table = tableEnv.sqlQuery("select * from user_info");DataStream<Tuple2<Boolean, Row>> dataStream = tableEnv.toRetractStream(table, Row.class);dataStream.print();//5. 启动任务env.execute("FlinkSqlCDC");}
}

3. 自定义反序列化器

规范化数据输出格式,方便后续解析

/**自定义反序列化器:实现 DebeziumDeserializationSchema<T> 接口并实现 deserialize 和 getProducedType 方法 
*/
public class MyDeserializationSchema implements DebeziumDeserializationSchema<String> {/*想要展示的数据格式:{"dbName":"","tableName":"","before":{"field1":"value1",...},"after":{"field1":"value1",...},"op":""}*/@Overridepublic void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception {JSONObject result = new JSONObject();//1.获取库名和表名String topic = sourceRecord.topic();String[] fields = topic.split("\\.");//2. 获取 before 数据Struct value = (Struct) sourceRecord.value();Struct before = value.getStruct("before");JSONObject beforeJSON = new JSONObject();if(before != null) {Schema schema = before.schema();List<Field> fields = schema.fields();for(Field field : fields) {beforeJSON.put(field.name(), before.get(field));}}//3. 获取 after 数据Struct after = value.getStruct("after");JSONObject afterJSON = new JSONObject();if(after != null) {Schema schema = after.schema();List<Field> fields = schema.fields();for(Field field : fields) {afterJSON.put(field.name(), after.get(field));}}//4. 获取操作类型 READ DELETE UPDATE CREATEEnvelope.Operation operation = Envelope.operationFor(sourceRecord);result.put("dbName", fields[1]);result.put("tableName", fields[2]);result.put("before", beforeJSON);result.put("after", afterJSON);result.put("op", operation);collcetor.collect(result.toJSONString());}@Overridepublic TypeInformation<String> getProducedType() {return TypeInformation.of(String.class);}	
}

这篇关于详解 Flink CDC 的介绍和入门案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060788

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s