教你轻松计算AOE网关键路径

2024-06-12 16:38
文章标签 路径 计算 轻松 关键 aoe

本文主要是介绍教你轻松计算AOE网关键路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转:教你轻松计算AOE网关键路径

认识AOE网

  有向图中,用顶点表示活动,用有向边表示活动之间开始的先后顺序,则称这种有向图为AOV网络;AOV网络可以反应任务完成的先后顺序(拓扑排序)。

  在AOV网的边上加上权值表示完成该活动所需的时间,则称这样的AOV网为AOE网,如下图: 

 

  

 

 

  图中,顶点表示事件(能被触发,两特征属性:最早发生时间Ve(j);最晚发生时间Vl(j)),边表示活动(能被开始,两特征属性:最早开始时间e(i);最晚开始时间l(i)),权表示活动持续时间,通常用AOE网来估算工程完成的时间

 

两条原则:

  Ø  只有某顶点所代表的事件发生后,从该顶点出发的各活动才能开始

  Ø  只有进入某顶点的各活动都结束,该顶点所代表的事件才能发生

 

计算关键路径

  首先,在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径为关键路径。

计算关键路径,只需求出上面的四个特征属性,然后取e(i)=l(i)的边即为关键路径上的边(关键路径可能不止一条)。

  先来看看四个特征属性的含义:

  Ø Ve(j):是指从始点开始到顶点Vk的最大路径长度

 

   计算技巧:

   (1)从前向后,取大值:直接前驱结点的Ve(j)+到达边(指向顶点的边)的权值,有多个值的取较大者

   (2)首结点Ve(j)已知,为0

 

  如上图各顶点(事件)的Ve(j): (从V1开始)

       V1 :天然是0

       V2:a1边    3

       V3:a3边    2

        V4:分三种情况①a1 + a5 = 5    ②a2 = 6   ③a3 + a6 = 3  取最大者

        V5:........

        V6:........

 

  

 

 

  Ø  Vl(j):在不推迟整个工期的前提下,事件vk允许的最晚发生时间

 

   计算技巧:

   (1)从后向前,取小值:直接后继结点的Vl(j) –发出边(从顶点发出的边)的权值,有多个值的取较小者;

   (2)终结点Vl(j)已知,等于它的Ve(j))

 

  如上图各顶点(事件)的Vl(j): (从V7开始,它的最早、最晚发生时间相同,都为10):

       

       V7:天然等于最大路径长度 10

       V6:由V7 = 10   有 10 - a10 = 6

       V5:由V7 = 10   有10 - a9 = 7

       V4:由V5 = 7       有7 - a8 = 6

       V3:有两个后继 V4和V6,所以分两种情况①V4 - a6 = 5      ②V6 - a7 = 3   取最小者, 所以V3 = 3

       V2:........    

  

 

 

  Ø  e(i): 若活动ai由弧<vk,vj>表示,则活动ai的最早开始时间应该等于事件vk的最早发生时间。因而,有:e[i]=ve[k];(即:边(活动)的最早开始时间等于,它的发出顶点的最早发生时间)

如上图各边(活动)的e(i):

       活动发生最早时间看的是活动边的前驱节点

      a1    a2   a3 前驱节点都是V1   然后从第一个图中,即最早发生事件中取值  a1= 0   a2 = 0  a3 = 0

      a4 前驱节点是V2     所以有a4 = 3

      a5.....

      a6......

  

 

 

  Ø  l(i): 若活动ai由弧<vk,vj>表示,则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。 因而有:l[i]=vl[j]-len<vk,vj>1(为边(活动)的到达顶点的最晚发生时间减去边的权值

如上图各边(活动)的l(i):

      活动的最晚发生时间 等于事件的最晚发生时间(第二个图)减去活动边

      即活动边的后继,去图2中找,然后减去活动边

     a4活动边后继是V5   由最晚发生事件得   V5 - a4 = 7 - 4 = 3

  

 

 

  至此已介绍完了四个特征属性的求法,也求出了上图中边的e(i)和l(i),取出e(i)=l(i)的边为a1、a2、a4、a8、a9,即为关键路径上的边,所以关键路径有两条:a1 a4 a9和 a2 a8 a9

 

  

 

 

==========================================================================

 

第二个例子对比一下

   

(最早发生,从前往后算;最迟发生,从后往前算。)

总结

  求关键路径,只需理解顶点(事件)和边(活动)各自的两个特征属性以及求法即可:

   Ø  先根据首结点的Ve(j)=0由前向后计算各顶点的最早发生时间

   Ø  再根据终结点的Vl(j)等于它的Ve(j)由后向前依次求解各顶点的最晚发生时间

   Ø  根据边的e(i)等于它的发出顶点的Ve(j)计算各边的最早开始时间(最早开始,对应最早发生)

   Ø  根据边的l(i)等于它的到达顶点的Vl(j)减去边的权值计算各边的最晚开始时间(最晚开始,对应最晚发生)

这篇关于教你轻松计算AOE网关键路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054762

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

电脑蓝牙连不上怎么办? 5 招教你轻松修复Mac蓝牙连接问题的技巧

《电脑蓝牙连不上怎么办?5招教你轻松修复Mac蓝牙连接问题的技巧》蓝牙连接问题是一些Mac用户经常遇到的常见问题之一,在本文章中,我们将提供一些有用的提示和技巧,帮助您解决可能出现的蓝牙连接问... 蓝牙作为一种流行的无线技术,已经成为我们连接各种设备的重要工具。在 MAC 上,你可以根据自己的需求,轻松地

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性