教你轻松计算AOE网关键路径

2024-06-12 16:38
文章标签 路径 计算 轻松 关键 aoe

本文主要是介绍教你轻松计算AOE网关键路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转:教你轻松计算AOE网关键路径

认识AOE网

  有向图中,用顶点表示活动,用有向边表示活动之间开始的先后顺序,则称这种有向图为AOV网络;AOV网络可以反应任务完成的先后顺序(拓扑排序)。

  在AOV网的边上加上权值表示完成该活动所需的时间,则称这样的AOV网为AOE网,如下图: 

 

  

 

 

  图中,顶点表示事件(能被触发,两特征属性:最早发生时间Ve(j);最晚发生时间Vl(j)),边表示活动(能被开始,两特征属性:最早开始时间e(i);最晚开始时间l(i)),权表示活动持续时间,通常用AOE网来估算工程完成的时间

 

两条原则:

  Ø  只有某顶点所代表的事件发生后,从该顶点出发的各活动才能开始

  Ø  只有进入某顶点的各活动都结束,该顶点所代表的事件才能发生

 

计算关键路径

  首先,在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径为关键路径。

计算关键路径,只需求出上面的四个特征属性,然后取e(i)=l(i)的边即为关键路径上的边(关键路径可能不止一条)。

  先来看看四个特征属性的含义:

  Ø Ve(j):是指从始点开始到顶点Vk的最大路径长度

 

   计算技巧:

   (1)从前向后,取大值:直接前驱结点的Ve(j)+到达边(指向顶点的边)的权值,有多个值的取较大者

   (2)首结点Ve(j)已知,为0

 

  如上图各顶点(事件)的Ve(j): (从V1开始)

       V1 :天然是0

       V2:a1边    3

       V3:a3边    2

        V4:分三种情况①a1 + a5 = 5    ②a2 = 6   ③a3 + a6 = 3  取最大者

        V5:........

        V6:........

 

  

 

 

  Ø  Vl(j):在不推迟整个工期的前提下,事件vk允许的最晚发生时间

 

   计算技巧:

   (1)从后向前,取小值:直接后继结点的Vl(j) –发出边(从顶点发出的边)的权值,有多个值的取较小者;

   (2)终结点Vl(j)已知,等于它的Ve(j))

 

  如上图各顶点(事件)的Vl(j): (从V7开始,它的最早、最晚发生时间相同,都为10):

       

       V7:天然等于最大路径长度 10

       V6:由V7 = 10   有 10 - a10 = 6

       V5:由V7 = 10   有10 - a9 = 7

       V4:由V5 = 7       有7 - a8 = 6

       V3:有两个后继 V4和V6,所以分两种情况①V4 - a6 = 5      ②V6 - a7 = 3   取最小者, 所以V3 = 3

       V2:........    

  

 

 

  Ø  e(i): 若活动ai由弧<vk,vj>表示,则活动ai的最早开始时间应该等于事件vk的最早发生时间。因而,有:e[i]=ve[k];(即:边(活动)的最早开始时间等于,它的发出顶点的最早发生时间)

如上图各边(活动)的e(i):

       活动发生最早时间看的是活动边的前驱节点

      a1    a2   a3 前驱节点都是V1   然后从第一个图中,即最早发生事件中取值  a1= 0   a2 = 0  a3 = 0

      a4 前驱节点是V2     所以有a4 = 3

      a5.....

      a6......

  

 

 

  Ø  l(i): 若活动ai由弧<vk,vj>表示,则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。 因而有:l[i]=vl[j]-len<vk,vj>1(为边(活动)的到达顶点的最晚发生时间减去边的权值

如上图各边(活动)的l(i):

      活动的最晚发生时间 等于事件的最晚发生时间(第二个图)减去活动边

      即活动边的后继,去图2中找,然后减去活动边

     a4活动边后继是V5   由最晚发生事件得   V5 - a4 = 7 - 4 = 3

  

 

 

  至此已介绍完了四个特征属性的求法,也求出了上图中边的e(i)和l(i),取出e(i)=l(i)的边为a1、a2、a4、a8、a9,即为关键路径上的边,所以关键路径有两条:a1 a4 a9和 a2 a8 a9

 

  

 

 

==========================================================================

 

第二个例子对比一下

   

(最早发生,从前往后算;最迟发生,从后往前算。)

总结

  求关键路径,只需理解顶点(事件)和边(活动)各自的两个特征属性以及求法即可:

   Ø  先根据首结点的Ve(j)=0由前向后计算各顶点的最早发生时间

   Ø  再根据终结点的Vl(j)等于它的Ve(j)由后向前依次求解各顶点的最晚发生时间

   Ø  根据边的e(i)等于它的发出顶点的Ve(j)计算各边的最早开始时间(最早开始,对应最早发生)

   Ø  根据边的l(i)等于它的到达顶点的Vl(j)减去边的权值计算各边的最晚开始时间(最晚开始,对应最晚发生)

这篇关于教你轻松计算AOE网关键路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054762

相关文章

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更