Python 制作词云图

2024-06-12 10:20
文章标签 python 制作 云图

本文主要是介绍Python 制作词云图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


在这里插入图片描述
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
在这里插入图片描述

  • 推荐:「stormsha的主页」👈,持续学习,不断总结,共同进步,为了踏实,做好当下事儿~

  • 专栏导航

    • Python系列: Python面试题合集,剑指大厂
    • Git系列: Git操作技巧
    • GO系列: 记录博主学习GO语言的笔记,该笔记专栏尽量写的试用所有入门GO语言的初学者
    • 数据库系列: 详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
    • 运维系列: 总结好用的命令,高效开发
    • 算法与数据结构系列: 总结数据结构和算法,不同类型针对性训练,提升编程思维

    非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨

    💖The Start💖点点关注,收藏不迷路💖

    📒文章目录

      • 词云图简介
      • 环境准备
      • 词云图的基本制作流程
        • 1. 文本数据准备
        • 2. 文本清洗
        • 3. 生成词云图
        • 4. 显示和保存词云图
        • 5. 完整代码
        • 6. 效果图
      • 技巧与最佳实践
        • 1. 词云图形状
        • 2. 词云图颜色
        • 3. 词云图字体
        • 4. 词云图布局
        • 5. 词云图的交互性


在数据可视化领域,词云图以其独特的视觉冲击力和信息传达能力,成为开发者和数据分析师展示文本数据的重要工具。本文将深入探讨如何使用 Python 制作词云图,并分享一些实用的技巧和最佳实践。

词云图简介

词云图是一种将文本数据中的关键词以不同大小、颜色和字体显示在图形中的可视化技术。关键词的字体大小通常与其在文本中出现的频率成正比,从而突出显示文本中的重要信息。

环境准备

在开始制作词云图之前,我们需要准备 Python 环境,并安装一些必要的库。主要使用的库包括 matplotlib 用于绘图,PIL 用于图像处理,以及 wordcloud 用于生成词云图。

pip install wordcloud

词云图的基本制作流程

1. 文本数据准备

首先,我们需要准备或获取文本数据。这些数据可以是网页内容、文章、评论等。例如,我们可以使用 Python 的 requests 库来获取网页内容。

import requestsurl = 'https://stormsha.blog.csdn.net/article/details/138405944/'
response = requests.get(url)
html_content = response.text

2. 文本清洗

获取文本后,需要进行清洗,去除无用的符号、停用词等,以提高词云图的质量。

import re
from wordcloud import STOPWORDS# 使用BeautifulSoup解析网页内容  
soup = BeautifulSoup(html_content, 'html.parser')  # 使用get_text()方法去除HTML标签,并将结果转换为字符串  
text = soup.get_text()  text = re.sub(r'\W+', ' ', text)
stopwords = set(STOPWORDS)
text = ' '.join([word for word in text.split() if word not in stopwords])

3. 生成词云图

使用 wordcloud 库生成词云图。我们可以自定义词云图的形状、颜色、字体等属性。

from wordcloud import WordCloudwordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)

4. 显示和保存词云图

最后,使用 matplotlib 库显示和保存词云图。

import matplotlib.pyplot as pltplt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.show()
wordcloud.to_file('word_cloud.png')

5. 完整代码

import matplotlib  
import requests  
import re  
from wordcloud import STOPWORDS, WordCloud  
import matplotlib.pyplot as plt  
from bs4 import BeautifulSoup  matplotlib.use('TkAgg')  
url = 'https://stormsha.blog.csdn.net/article/details/138405944/'  
response = requests.get(url)  
html_content = response.text  # 使用BeautifulSoup解析网页内容  
soup = BeautifulSoup(html_content, 'html.parser')  # 使用get_text()方法去除HTML标签,并将结果转换为字符串  
text = soup.get_text()  text = re.sub(r'\W+', ' ', text)  
stopwords = set(STOPWORDS)  
text = ' '.join([word for word in text.split() if word not in stopwords])  
word_cloud = WordCloud(width=800, height=400, background_color='white').generate(text)  
plt.figure(figsize=(10, 5))  
plt.imshow(word_cloud, interpolation='bilinear')  
plt.axis('off')  
plt.show()  
word_cloud.to_file('word_cloud.png')

6. 效果图

![[Figure_1.png]]

技巧与最佳实践

1. 词云图形状

默认的词云图是矩形的,但我们可以自定义词云图的形状,如使用公司 logo 或特定图形作为词云的轮廓。

from PIL import Image
image_coloring = np.array(Image.open('shape.png'))
wordcloud = WordCloud(mask=image_coloring).generate(text)

2. 词云图颜色

颜色对于词云图的视觉效果至关重要。我们可以根据文本内容或个人喜好调整颜色。

wordcloud = WordCloud(colormap='viridis').generate(text)

3. 词云图字体

选择合适的字体可以增强词云图的可读性和美观性。我们可以使用本地字体或在线字体。

wordcloud = WordCloud(font_path='path_to_font.ttf').generate(text)

4. 词云图布局

通过调整词云图的 max_font_sizemax_words 参数,我们可以控制词云图的布局和密度。

wordcloud = WordCloud(max_font_size=110, max_words=200).generate(text)

5. 词云图的交互性

为了使词云图更加生动有趣,我们可以添加交互性,如鼠标悬停显示单词频率。

from wordcloud import get_single_color_funcdef color_func(word, font_size, position, orientation, random_state=None, **kwargs):return "hsl(0, 100%, %d%%)" % (100 - (font_size / max_font_size) * 100)wordcloud = WordCloud(color_func=color_func).generate(text)

🔥🔥🔥道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙

💖The End💖点点关注,收藏不迷路💖

这篇关于Python 制作词云图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053944

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

用Unity2D制作一个人物,实现移动、跳起、人物静止和动起来时的动画:中(人物移动、跳起、静止动作)

上回我们学到创建一个地形和一个人物,今天我们实现一下人物实现移动和跳起,依次点击,我们准备创建一个C#文件 创建好我们点击进去,就会跳转到我们的Vision Studio,然后输入这些代码 using UnityEngine;public class Move : MonoBehaviour // 定义一个名为Move的类,继承自MonoBehaviour{private Rigidbo

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目