Python中使用SQLAlchemy连接Mysql数据库(单表操作)

本文主要是介绍Python中使用SQLAlchemy连接Mysql数据库(单表操作),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,SQLAlchemy的安装
使用

$ easy_install sqlalchemy
或
$ pip install sqlalchemy

如果出现什么错,就进去root用户下进行安装试试,或者网上查查

>>> import sqlalchemy
>>> 

这样说明成功了,切记是小写哦
二,使用
理论我也不懂,自己查查资料,现在用一个小的案例说一下使用步骤
1,在进行数据操作之前要先连上数据库。

>>> from sqlalchemy import create_engine
>>> from sqlalchemy.orm import sessionmaker  
>>> DB_CONNECT = 'mysql+mysqldb://root:102@localhost/mydb'
>>> engine = create_engine(DB_CONNECT, echo=True)
>>> DB_Session = sessionmaker(bind=engine)
>>> session = DB_Session()

from 是从sqlalchemy中插入必须的模板,DB_CONNECT 是构造数据库的路径 ,mysql+mysqldb是说明使用MySQL-Python 来连接,root是数据库用户名,102是密码,localhost表示是数据库在本机上,mydb是要连接的数据库名字,设置字符集的charset可以省了
create_engine() 会返回一个数据库引擎,echo 参数为 True 时,会显示每条执行的 SQL 语句,生产环境下可关闭。
sessionmaker(bind=engine)会生成一个数据库会话类。这个类的实例可以当成一个数据库连接,它同时还记录了一些查询的数据,并决定什么时候执行 SQL 语句。由于 SQLAlchemy 自己维护了一个数据库连接池(默认 5 个连接),也可以自己设置。
得到session 后,就可以执行 SQL 了:
2,在进行操作前先把表给建立了,由于SQLAlchemy 可以和变进行建立连接并且可以通过语言进行见表

mysql> show tables;
Empty set (0.00 sec)
mysql> 

此时是没有表的,现在我们建立一个学生便stu,一个课程表cla和一个成绩表grade

>>> from sqlalchemy import Column
>>> from sqlalchemy.types import CHAR, Integer, String
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from random import randint
>>> from sqlalchemy import ForeignKey
>>> BaseModel = declarative_base()
>>> def init_db():
...     BaseModel.metadata.create_all(engine)
... 
>>> def drop_db():
...     BaseModel.metadata.drop_all()
... 
>>> class Stu(BaseModel):
...     __tablename__='stu'
...     id = Column(Integer,primary_key = True)
...     name = Column(CHAR(30))
... 
>>> class Cla(BaseModel):
...     __tablename__='cla'
...     id = Column(Integer,primary_key = True)设置主键
...     cname = Column(CHAR(30))
... 
>>> class Grade(BaseModel):
...     __tablename__ = 'grade'
...     uid = Column(Integer,ForeignKey('stu.id'))设置外键
...     cid = Column(Integer,ForeignKey('cla.id'))
...     id = Column(Integer,primary_key=True)
...     gre=Column(Integer)
... 

declarative_base() 创建了一个 BaseModel 类,这个类的子类可以自动与一个表关联。以 Stu 类为例,它的 tablename 属性就是数据库中该表的名称,它有 id 和 name 这两个字段,分别为整型和 30 个定长字符。Column 还有一些其他的参数,我就不解释了。
最后,BaseModel.metadata.create_all(engine) 会找到 BaseModel 的所有子类,并在数据库中建立这些表;drop_all() 则是删除这些表。
现在执行init_db()进行建立表,对应语句如下

>>> init_db()
CREATE TABLE stu (id INTEGER NOT NULL AUTO_INCREMENT, name CHAR(30), PRIMARY KEY (id)
)CREATE TABLE cla (id INTEGER NOT NULL AUTO_INCREMENT, cname CHAR(30), PRIMARY KEY (id)
)
CREATE TABLE grade (id INTEGER NOT NULL AUTO_INCREMENT, uid INTEGER, cid INTEGER, gre INTEGER, PRIMARY KEY (id), FOREIGN KEY(uid) REFERENCES stu (id), FOREIGN KEY(cid) REFERENCES cla (id)
)
COMMIT
>>> 

以上就是执行时对应的建表语句,现在去数据库看看表是否存在,并查看一个表结构

mysql> show tables;
+----------------+
| Tables_in_mydb |
+----------------+
| cla            |
| grade          |
| stu            |
+----------------+
3 rows in set (0.00 sec)

表已经建立成功了,现在看一下表结构

mysql> desc grade;
+-------+---------+------+-----+---------+----------------+
| Field | Type    | Null | Key | Default | Extra          |
+-------+---------+------+-----+---------+----------------+
| id    | int(11) | NO   | PRI | NULL    | auto_increment |
| uid   | int(11) | YES  | MUL | NULL    |                |
| cid   | int(11) | YES  | MUL | NULL    |                |
| gre   | int(11) | YES  |     | NULL    |                |
+-------+---------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

可以看出 使用SQLAlchemy中的语句和使用SQL语句的结果一样。接下来就可以插入数据了

>>> stu = Stu(name='a')
>>> session.add(stu)
>>> stu = Stu(name='b')
>>> session.add(stu)
>>> stu = Stu(name='c')
>>> session.add(stu)
>>> stu = Stu(name='d')
>>> session.add(stu)
>>> stu = Stu(name='e')
>>> session.add(stu)
>>> 

手动插入了五条记录,但此时还没有提交,没有真正的写入数据库
或者使用非ORM方式进行插入

>>>session.execute(Stu.__table__.insert(),[{'name':randint(1,100)} for i in xrange(10000)])
>>>session.commit()
#可以速度更快的插入更多的数据
>>> session.commit()
2016-05-09 18:22:16,839 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2016-05-09 18:22:16,840 INFO sqlalchemy.engine.base.Engine INSERT INTO stu (name) VALUES (%s)
2016-05-09 18:22:16,840 INFO sqlalchemy.engine.base.Engine ('a',)
2016-05-09 18:22:16,841 INFO sqlalchemy.engine.base.Engine INSERT INTO stu (name) VALUES (%s)
2016-05-09 18:22:16,841 INFO sqlalchemy.engine.base.Engine ('b',)
2016-05-09 18:22:16,841 INFO sqlalchemy.engine.base.Engine INSERT INTO stu (name) VALUES (%s)
2016-05-09 18:22:16,841 INFO sqlalchemy.engine.base.Engine ('c',)
2016-05-09 18:22:16,842 INFO sqlalchemy.engine.base.Engine INSERT INTO stu (name) VALUES (%s)
2016-05-09 18:22:16,842 INFO sqlalchemy.engine.base.Engine ('d',)
2016-05-09 18:22:16,842 INFO sqlalchemy.engine.base.Engine INSERT INTO stu (name) VALUES (%s)
2016-05-09 18:22:16,842 INFO sqlalchemy.engine.base.Engine ('e',)
2016-05-09 18:22:16,843 INFO sqlalchemy.engine.base.Engine COMMIT
>>> 

此时真的写入数据库了哦。向课程表插入五条

>>> cla = Cla(cname='yuwen')
>>> session.add(cla)
>>> cla = Cla(cname='shuxue')
>>> session.add(cla)
>>> cla = Cla(cname='yingyu')
>>> session.add(cla)
>>> cla = Cla(cname='wuli')
>>> session.add(cla)
>>> cla = Cla(cname='huaxue')
>>> session.add(cla)
>>> session.commit()

3,现在开始操作数据

>>> query = session.query(Stu)
>>> for st in query:
...     print st.name
... 
对应的SQL语句
SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu
2016-05-09 18:56:07,084 INFO sqlalchemy.engine.base.Engine ()
a
b
c
d
e
>>> print query.all()# # 返回的是一个类似列表的对象
SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu
2016-05-09 18:58:16,085 INFO sqlalchemy.engine.base.Engine ()
[<__main__.Stu object at 0xb66b3f4c>, <__main__.Stu object at 0xb5e4202c>, <__main__.Stu object at 0xb66b3f8c>, <__main__.Stu object at 0xb5e4206c>, <__main__.Stu object at 0xb6688c0c>]>>> print query.first().name# 有数据时返回第一条记录,没有数据时会返回 None
SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu LIMIT %s
2016-05-09 18:59:43,149 INFO sqlalchemy.engine.base.Engine (1,)
a
# print query.one().name# 不存在,或有多行记录时会抛出异常>>> print query.filter(Stu.id == 2).first().name
SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu 
WHERE stu.id = %s LIMIT %s
2016-05-09 19:04:54,363 INFO sqlalchemy.engine.base.Engine (2, 1)
b
>>> print query.filter('id = 2').first().name # 支持字符串
SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu 
WHERE id = 2 LIMIT %s
2016-05-09 19:07:02,016 INFO sqlalchemy.engine.base.Engine (1,)
b
>>> print query.get(2).name # 以主键获取,等效于上句
2016-05-09 19:07:40,007 INFO sqlalchemy.engine.base.Engine SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu 
WHERE stu.id = %s
2016-05-09 19:07:40,007 INFO sqlalchemy.engine.base.Engine (2,)
b
>>> print query.get(2).id
SELECT stu.id AS stu_id, stu.name AS stu_name 
FROM stu 
WHERE stu.id = %s
2016-05-09 19:08:46,009 INFO sqlalchemy.engine.base.Engine (2,)
2
>>> quer2 = session.query(Stu.name)
>>> print quer2.all() 
SELECT stu.name AS stu_name 
FROM stu
2016-05-09 19:09:46,259 INFO sqlalchemy.engine.base.Engine ()
[('a',), ('b',), ('c',), ('d',), ('e',)]
>>> print quer2.limit(1).all() #只返回一条
2016-05-09 19:11:23,383 INFO sqlalchemy.engine.base.Engine SELECT stu.name AS stu_name 
FROM stu LIMIT %s
2016-05-09 19:11:23,383 INFO sqlalchemy.engine.base.Engine (1,)
[('a',)]>>> print quer2.limit(2).all()#只返回两条
SELECT stu.name AS stu_name 
FROM stu LIMIT %s
2016-05-09 19:11:29,480 INFO sqlalchemy.engine.base.Engine (2,)
[('a',), ('b',)]
>>> print quer2.offset(1).all() #跳过一条,从第二条数据开始查询
SELECT stu.name AS stu_name 
FROM stu LIMIT %s, 18446744073709551615
2016-05-09 19:13:25,734 INFO sqlalchemy.engine.base.Engine (1,)
[('b',), ('c',), ('d',), ('e',)]
>>> print quer2.offset(3).all() #从第四条数据开始
SELECT stu.name AS stu_name 
FROM stu LIMIT %s, 18446744073709551615
2016-05-09 19:13:39,629 INFO sqlalchemy.engine.base.Engine (3,)
[('d',), ('e',)]
#按name降序排序
>>> print quer2.order_by(Stu.name.desc()).all()
SELECT stu.name AS stu_name 
FROM stu ORDER BY stu.name DESC
2016-05-09 19:16:56,022 INFO sqlalchemy.engine.base.Engine ()
[('e',), ('d',), ('c',), ('b',), ('a',)]>>> print quer2.order_by('name desc').all()
SELECT stu.name AS stu_name 
FROM stu ORDER BY name desc
2016-05-09 19:17:09,851 INFO sqlalchemy.engine.base.Engine ()
[('e',), ('d',), ('c',), ('b',), ('a',)]
#按name降序,有重复的按id升序排序
>>> print session.query(Stu.id).order_by('name desc','id').all()
SELECT stu.id AS stu_id 
FROM stu ORDER BY name desc, stu.id
2016-05-09 19:20:34,818 INFO sqlalchemy.engine.base.Engine ()
[(5L,), (4L,), (3L,), (2L,), (1L,)]
#scalar()在有多条数据时使用报出异常,all()可以使用多条也可以使用一条
#>>> print quer2.filter(Stu.id>2).scalar()
>>> print quer2.filter(Stu.id>2).all()
SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id > %s
2016-05-09 19:56:47,760 INFO sqlalchemy.engine.base.Engine (2,)
[('c',), ('d',), ('e',)]>>> print quer2.filter(Stu.id==2).all()
SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id = %s
2016-05-09 19:57:47,901 INFO sqlalchemy.engine.base.Engine (2,)
[('b',)]>>> print quer2.filter(Stu.id==2).scalar()
SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id = %s
2016-05-09 19:23:38,761 INFO sqlalchemy.engine.base.Engine (2,)
b>>> print quer2.filter('id=2').scalar()
SELECT stu.name AS stu_name 
FROM stu 
WHERE id=2
2016-05-09 19:43:47,797 INFO sqlalchemy.engine.base.Engine ()
b#在此中‘,’等价于and
>>> print query2.filter(Stu.id>1,Stu.name !='a').first()
SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id > %s AND stu.name != %s LIMIT %s
2016-05-09 19:51:14,571 INFO sqlalchemy.engine.base.Engine (1, 'a', 1)
('b',)
>>> 
#此种迭代也类似与and
>>> query3 = query2.filter(Stu.id>1)
>>> query3 = query3.filter(Stu.name != 'a')
>>> query3.first()
2016-05-09 19:53:50,150 INFO sqlalchemy.engine.base.Engine SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id > %s AND stu.name != %s LIMIT %s
2016-05-09 19:53:50,151 INFO sqlalchemy.engine.base.Engine (1, 'a', 1)
('b',)
#or_就是类似or
>>> print query2.filter(or_(Stu.id == 1,Stu.id==2)).all()
2016-05-09 19:55:59,383 INFO sqlalchemy.engine.base.Engine SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id = %s OR stu.id = %s
2016-05-09 19:55:59,383 INFO sqlalchemy.engine.base.Engine (1, 2)
[('a',), ('b',)]
# in的用法
>>> print query2.filter(Stu.id.in_((1,2,3))).all()
SELECT stu.name AS stu_name 
FROM stu 
WHERE stu.id IN (%s, %s, %s)
2016-05-09 20:01:01,729 INFO sqlalchemy.engine.base.Engine (1, 2, 3)
[('a',), ('b',), ('c',)]
>>> 
#为null的一些用法
>>> query4 = session.query(Stu.id)
>>> print query4.filter(Stu.name==None).scalar()
SELECT stu.id AS stu_id 
FROM stu 
WHERE stu.name IS NULL
2016-05-09 20:02:59,821 INFO sqlalchemy.engine.base.Engine ()
None
>>> 
>>> print query4.filter('name is null').scalar()
SELECT stu.id AS stu_id 
FROM stu 
WHERE name is null
2016-05-09 20:03:40,312 INFO sqlalchemy.engine.base.Engine ()
None
>>> 
#不为null的一些用法
>>> print query4.filter(not_(Stu.name == None)).all()
SELECT stu.id AS stu_id 
FROM stu 
WHERE stu.name IS NOT NULL
2016-05-09 20:04:49,888 INFO sqlalchemy.engine.base.Engine ()
[(1L,), (2L,), (3L,), (4L,), (5L,)]
>>> >>> print query4.filter(Stu.name != None).all()
SELECT stu.id AS stu_id 
FROM stu 
WHERE stu.name IS NOT NULL
2016-05-09 20:05:42,724 INFO sqlalchemy.engine.base.Engine ()
[(1L,), (2L,), (3L,), (4L,), (5L,)]
>>> 
#func条用各种函数的用法>>> print query4.count()
SELECT count(*) AS count_1 
FROM (SELECT stu.id AS stu_id 
FROM stu) AS anon_1
2016-05-09 20:08:43,352 INFO sqlalchemy.engine.base.Engine ()
5>>> print session.query(func.count('*')).select_from(Stu).scalar()SELECT count(%s) AS count_1 
FROM stu
2016-05-09 20:08:43,356 INFO sqlalchemy.engine.base.Engine ('*',)
5>>> print session.query(func.count('1')).select_from(Stu).scalar()
SELECT count(%s) AS count_1 
FROM stu
2016-05-09 20:08:43,362 INFO sqlalchemy.engine.base.Engine ('1',)
5>>> print session.query(func.count(Stu.id)).scalar()
SELECT count(stu.id) AS count_1 
FROM stu
2016-05-09 20:08:43,369 INFO sqlalchemy.engine.base.Engine ()
5>>> print session.query(func.count('*')).filter(Stu.id > 0).scalar() # filter()中包含Stu,因此不需要指定表
SELECT count(%s) AS count_1 
FROM stu 
WHERE stu.id > %s
2016-05-09 20:08:43,377 INFO sqlalchemy.engine.base.Engine ('*', 0)
5>>> print session.query(func.count('*')).filter(Stu.name == 'a').limit(1).scal() == 1 # 可以用 limit() 限制 count() 的返回数
SELECT count(%s) AS count_1 
FROM stu 
WHERE stu.name = %s LIMIT %s
2016-05-09 20:08:43,394 INFO sqlalchemy.engine.base.Engine ('*', 'a', 1)
True>>> print session.query(func.sum(Stu.id)).scalar()
SELECT sum(stu.id) AS sum_1 
FROM stu
2016-05-09 20:08:43,401 INFO sqlalchemy.engine.base.Engine ()
15>>> print session.query(func.now()).scalar() # func 后可以跟任意函数名,只要该据库支持
SELECT now() AS now_1
2016-05-09 20:08:43,406 INFO sqlalchemy.engine.base.Engine ()
2016-05-09 20:08:43>>> print session.query(func.current_timestamp()).scalar()
SELECT CURRENT_TIMESTAMP AS current_timestamp_1
2016-05-09 20:08:43,411 INFO sqlalchemy.engine.base.Engine ()
2016-05-09 20:08:43>>> print session.query(func.md5(Stu.name)).filter(Stu.id == 1).scalar()
SELECT md5(stu.name) AS md5_1 
FROM stu 
WHERE stu.id = %s
2016-05-09 20:08:44,841 INFO sqlalchemy.engine.base.Engine (1,)
0cc175b9c0f1b6a831c399e269772661
>>> 
#修改数据
>>> query.filter(Stu.id==1).update({Stu.name:'li'})
UPDATE stu SET name=%s WHERE stu.id = %s
2016-05-09 20:12:57,027 INFO sqlalchemy.engine.base.Engine ('li', 1)
1L#删除数据
>>> query = session.query(Grade)
>>> query.filter(Grade.id == 1).delete()
DELETE FROM grade WHERE grade.id = %s
2016-05-09 20:28:18,638 INFO sqlalchemy.engine.base.Engine (1,)
1L
>>> 
此时没有提交,在数据库中环视存在的
mysql> select * from grade;
+----+------+------+------+
| id | uid  | cid  | gre  |
+----+------+------+------+
|  1 |    1 |    1 |   60 |
|  2 |    2 |    1 |   66 |
|  3 |    5 |    1 |   66 |
|  4 |    5 |    5 |   96 |
|  5 |    5 |    3 |   96 |
|  6 |    3 |    2 |   96 |
|  7 |    3 |    4 |   76 |
|  8 |    4 |    4 |   76 |
|  9 |    4 |    3 |   76 |
| 10 |    4 |    5 |   76 |
| 11 |    1 |    4 |   76 |
| 12 |    1 |    5 |   76 |
| 13 |    2 |    5 |   76 |
| 14 |    3 |    3 |   60 |
| 15 |    2 |    3 |   50 |
+----+------+------+------+
15 rows in set (0.00 sec)
#开始提交
>>> session.commit()
2016-05-09 20:31:02,461 INFO sqlalchemy.engine.base.Engine COMMIT
>>> 
mysql> select * from grade;
+----+------+------+------+
| id | uid  | cid  | gre  |
+----+------+------+------+
|  2 |    2 |    1 |   66 |
|  3 |    5 |    1 |   66 |
|  4 |    5 |    5 |   96 |
|  5 |    5 |    3 |   96 |
|  6 |    3 |    2 |   96 |
|  7 |    3 |    4 |   76 |
|  8 |    4 |    4 |   76 |
|  9 |    4 |    3 |   76 |
| 10 |    4 |    5 |   76 |
| 11 |    1 |    4 |   76 |
| 12 |    1 |    5 |   76 |
| 13 |    2 |    5 |   76 |
| 14 |    3 |    3 |   60 |
| 15 |    2 |    3 |   50 |
+----+------+------+------+
14 rows in set (0.00 sec)也获取不到对象了
>>> print query.get(1)
SELECT grade.id AS grade_id, grade.uid AS grade_uid, grade.cid AS grade_cid, grade.gre AS grade_gre 
FROM grade 
WHERE grade.id = %s
2016-05-09 20:32:20,742 INFO sqlalchemy.engine.base.Engine (1,)
None
>>> 

单表的增删改查完事了,下面来看看多表连接操作
http://blog.csdn.net/u011573853/article/details/51363780
一些细节会在下面进行说明(事务,加锁,编码等)
http://blog.csdn.net/u011573853/article/details/51366124

这篇关于Python中使用SQLAlchemy连接Mysql数据库(单表操作)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1053728

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck