宏观内存信息统计

2024-06-11 17:58
文章标签 统计 内存 信息 宏观

本文主要是介绍宏观内存信息统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

/proc/meminfo统计信息解释

linux下内存的统计信息的解释:

 

例如 "cat /proc/meminfo":

MemTotal:  1031016 kB 
MemFree:  13548 kB
MemShared:  0 kB
Buffers:  98064 kB
Cached:   692320 kB
SwapCached:  2244 kB
Active:   563112 kB
Inact_dirty:  309584 kB
Inact_clean:  79508 kB
Inact_target:  190440 kB
HighTotal:  130992 kB
HighFree:  1876 kB
LowTotal:  900024 kB
LowFree:  11672 kB
SwapTotal:  1052248 kB
SwapFree:  1043908 kB
Committed_AS:  332340 kB  

The information comes in the form of both high-level and low-level statistics. At the top you see a quick summary of the most common values people would like to look at. Below you find the individual values we will discuss. First we will discuss the high-level statistics.

High-Level Statistics

  • MemTotal: Total usable ram (i.e. physical ram minus a few reserved bits and the kernel binary code)
  • MemFree: Is sum of LowFree+HighFree (overall stat)
  • MemShared: 0; is here for compat reasons but always zero.
  • Buffers: Memory in buffer cache. mostly useless as metric nowadays
  • Cached: Memory in the pagecache (diskcache) minus SwapCache
  • SwapCache: Memory that once was swapped out, is swapped back in but still also is in the swapfile (if memory is needed it doesn't need to be swapped out AGAIN because it is already in the swapfile. This saves I/O)

Detailed Level Statistics
VM Statistics

VM splits the cache pages into "active" and "inactive" memory. The idea is that if you need memory and some cache needs to be sacrificed for that, you take it from inactive since that's expected to be not used. The vm checks what is used on a regular basis and moves stuff around.

When you use memory, the CPU sets a bit in the pagetable and the VM checks that bit occasionally, and based on that, it can move pages back to active. And within active there's an order of "longest ago not used" (roughly, it's a little more complex in reality). The longest-ago used ones can get moved to inactive. Inactive is split into two in the above kernel (2.4.18-24.8.0). Some have it three.

  • Active: Memory that has been used more recently and usually not reclaimed unless absolutely necessary.
  • Inact_dirty: Dirty means "might need writing to disk or swap." Takes more work to free. Examples might be files that have not been written to yet. They aren't written to memory too soon in order to keep the I/O down. For instance, if you're writing logs, it might be better to wait until you have a complete log ready before sending it to disk.
  • Inact_clean: Assumed to be easily freeable. The kernel will try to keep some clean stuff around always to have a bit of breathing room.
  • Inact_target: Just a goal metric the kernel uses for making sure there are enough inactive pages around. When exceeded, the kernel will not do work to move pages from active to inactive. A page can also get inactive in a few other ways, e.g. if you do a long sequential I/O, the kernel assumes you're not going to use that memory and makes it inactive preventively. So you can get more inactive pages than the target because the kernel marks some cache as "more likely to be never used" and lets it cheat in the "last used" order.

Memory Statistics

  • HighTotal: is the total amount of memory in the high region. Highmem is all memory above (approx) 860MB of physical RAM. Kernel uses indirect tricks to access the high memory region. Data cache can go in this memory region.
  • LowTotal: The total amount of non-highmem memory.
  • LowFree: The amount of free memory of the low memory region. This is the memory the kernel can address directly. All kernel datastructures need to go into low memory.
  • SwapTotal: Total amount of physical swap memory.
  • SwapFree: Total amount of swap memory free.
  • Committed_AS: An estimate of how much RAM you would need to make a 99.99% guarantee that there never is OOM (out of memory) for this workload. Normally the kernel will overcommit memory. That means, say you do a 1GB malloc, nothing happens, really. Only when you start USING that malloc memory you will get real memory on demand, and just as much as you use. So you sort of take a mortgage and hope the bank doesn't go bust. Other cases might include when you mmap a file that's shared only when you write to it and you get a private copy of that data. While it normally is shared between processes. The Committed_AS is a guesstimate of how much RAM/swap you would need worst-case.

 

 

/proc/meminfo文件分析

> cat /proc/meminfo    读出的内核信息进行解释,

下篇文章会简单对读出该信息的代码进行简单的分析。

MemTotal:       507480 kB
MemFree:         10800 kB
Buffers:         34728 kB
Cached:          98852 kB
SwapCached:        128 kB
Active:         304248 kB
Inactive:        46192 kB
HighTotal:           0 kB
HighFree:            0 kB
LowTotal:       507480 kB
LowFree:         10800 kB
SwapTotal:      979956 kB
SwapFree:       941296 kB
Dirty:              32 kB
Writeback:           0 kB
AnonPages:      216756 kB
Mapped:          77560 kB
Slab:            22952 kB
SReclaimable:    15512 kB
SUnreclaim:       7440 kB
PageTables:       2640 kB
NFS_Unstable:        0 kB
Bounce:              0 kB
CommitLimit:   1233696 kB
Committed_AS:   828508 kB
VmallocTotal:   516088 kB
VmallocUsed:      5032 kB
VmallocChunk:   510580 kB



相应选项中文意思想各位高手已经知道,如何翻译有什么错误,请务必指出:

    MemTotal: 所有可用RAM大小 (即物理内存减去一些预留位和内核的二进制代码大小)

     MemFree: LowFree与HighFree的总和,被系统留着未使用的内存

     Buffers: 用来给文件做缓冲大小

      Cached: 被高速缓冲存储器(cache memory)用的内存的大小(等于 diskcache minus SwapCache ).

  SwapCached:被高速缓冲存储器(cache memory)用的交换空间的大小
             已经被交换出来的内存,但仍然被存放在swapfile中。用来在需要的时候很快的被替换而不需要再次打开I/O端口。

      Active: 在活跃使用中的缓冲或高速缓冲存储器页面文件的大小,除非非常必要否则不会被移作他用.

    Inactive: 在不经常使用中的缓冲或高速缓冲存储器页面文件的大小,可能被用于其他途径.

   HighTotal:
    HighFree: 该区域不是直接映射到内核空间。内核必须使用不同的手法使用该段内存。

    LowTotal:
     LowFree: 低位可以达到高位内存一样的作用,而且它还能够被内核用来记录一些自己的数据结构。Among many
              other things, it is where everything from the Slab is
              allocated.  Bad things happen when you're out of lowmem.
         
   SwapTotal: 交换空间的总大小

    SwapFree: 未被使用交换空间的大小

    Dirty: 等待被写回到磁盘的内存大小。
     
   Writeback: 正在被写回到磁盘的内存大小。
  
   AnonPages:未映射页的内存大小
  
   Mapped: 设备和文件等映射的大小。
  
   Slab: 内核数据结构缓存的大小,可以减少申请和释放内存带来的消耗。

   SReclaimable:可收回Slab的大小
  
   SUnreclaim:不可收回Slab的大小(SUnreclaim+SReclaimable=Slab)
  
   PageTables:管理内存分页页面的索引表的大小。
  
   NFS_Unstable:不稳定页表的大小
  
   Bounce:

 CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
              this is the total amount of  memory currently available to
              be allocated on the system. This limit is only adhered to
              if strict overcommit accounting is enabled (mode 2 in
              'vm.overcommit_memory').
              The CommitLimit is calculated with the following formula:
              CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap
              For example, on a system with 1G of physical RAM and 7G
              of swap with a `vm.overcommit_ratio` of 30 it would
              yield a CommitLimit of 7.3G.
              For more details, see the memory overcommit documentation
              in vm/overcommit-accounting.
             
Committed_AS: The amount of memory presently allocated on the system.
              The committed memory is a sum of all of the memory which
              has been allocated by processes, even if it has not been
              "used" by them as of yet. A process which malloc()'s 1G
              of memory, but only touches 300M of it will only show up
              as using 300M of memory even if it has the address space
              allocated for the entire 1G. This 1G is memory which has
              been "committed" to by the VM and can be used at any time
              by the allocating application. With strict overcommit
              enabled on the system (mode 2 in 'vm.overcommit_memory'),
              allocations which would exceed the CommitLimit (detailed
              above) will not be permitted. This is useful if one needs
              to guarantee that processes will not fail due to lack of
              memory once that memory has been successfully allocated.

VmallocTotal: 可以vmalloc虚拟内存大小

VmallocUsed: 已经被使用的虚拟内存大小。

VmallocChunk: largest contigious block of vmalloc area which is free

linux中内存是如何使用的。
当有应用需要读写磁盘数据时,由系统把相关数据从磁盘读取到内存,如果物理内存不够,则把内存中的部分数据导入到磁盘,从而把磁盘的部分空间当作虚拟内存来使用,也称为Swap。如果给所有应用分配足够内存后,物理内存还有剩余,linux会尽量再利用这些空闲内存,以提高整体I/O效率,其方法是把这部分剩余内存再划分为cache及buffer两部分加以利用。
从磁盘读取到内存的数据在被相关应用程序读取后,如果有剩余内存,则这部分数据会存入cache,以备第2次读取时,避免重新读取磁盘。当一个应用程序在内存中修改过数据后,因为写入磁盘速度相对较低,在有空闲内存的情况下,这些数据先存入buffer,在以后某个时间再写入磁盘,从而应用程序可以继续后面的操作,而不必等待这些数据写入磁盘的操作完成。
如果在某个时刻,系统需要更多的内存,则会把cache部分擦除,并把buffer中的内容写入磁盘,从而把这两部分内存释放给系统使用,这样再次读取cache中的内容时,就需要重新从磁盘读取了。

通过以上分析可以得知,空闲物理内存不多,不一定表示系统运行状态很差,因为内存的cache及buffer部分可以随时被重用,在某种意义上,这两部分内存也可以看作诗额外的空闲内存。swap如果被频繁调用,bi,bo长时间不为0,则才是内存资源是否紧张的依据。



下面简单来个例子,看看已用内存和物理内存大小..

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int MemInfo(char* Info, int len);
int main()
{
  char buf[128];

  memset(buf, 0, 128);
  MemInfo(buf, 100);
  printf("%s", buf);
  return 0;
}
int MemInfo(char* Info, int len)
{
  char sStatBuf[256];
  FILE* fp;
  int flag;
  int TotalMem;
  int UsedMem;
  char* line;
  if(system("free -m | awk '{print $2,$3}' > mem"));
  memset(sStatBuf, 0, 256);
  fp = fopen("mem", "rb");
  if(fp < 0)
  {
    return -1;
   }
  fread(sStatBuf,1, sizeof(sStatBuf) , fp);
 
  line = strstr(sStatBuf, "/n");
  TotalMem = atoi(line);
  line = strstr(line, " ");
  UsedMem = atoi(line);
  memset(sStatBuf, 0, 256);
  sprintf(sStatBuf, "Used %dM/Total %dM/n", UsedMem, TotalMem);
  if(strlen(sStatBuf) > len)
   {
     return -1;
   }
   memcpy(Info, sStatBuf, strlen(sStatBuf));
   return 0;
}


结果:Used 488M/Total 495M



这篇关于宏观内存信息统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051885

相关文章

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

Python如何获取域名的SSL证书信息和到期时间

《Python如何获取域名的SSL证书信息和到期时间》在当今互联网时代,SSL证书的重要性不言而喻,它不仅为用户提供了安全的连接,还能提高网站的搜索引擎排名,那我们怎么才能通过Python获取域名的S... 目录了解SSL证书的基本概念使用python库来抓取SSL证书信息安装必要的库编写获取SSL证书信息

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内