字符设备之poll机制

2024-06-11 16:08
文章标签 机制 设备 字符 poll

本文主要是介绍字符设备之poll机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

poll机制作用:相当于一个定时器,时间到了还没有资源就唤醒进程。

主要用途就是:进程设置一段时间用来等待资源,如果时间到了资源还没有到来,进程就立刻从睡眠状态唤醒不再等待。当然这只是使用于这段时间以后资源对于该进程已经无用的情况。

内核中poll机制的实现过程:
sys_poll函数在include/linux/syscalls.h中声明

//函数定义前加宏asmlinkage ,表示这些函数通过堆栈而不是通过寄存器传递参数。 
asmlinkage long sys_poll(struct pollfd __user *ufds, unsigned int nfds,long timeout);
在系统调用表arch\arm\kernel\calls.S中调用

CALL(sys_poll) //系统调用跳转表的一项

关于系统调用表的初始化在arch/arm/kernel/entry-common.S中

.equ NR_syscalls,0  //将NR_syscalls初始化为0
#define CALL(x) .equ NR_syscalls,NR_syscalls+1  //将CALL(x) 定义为: NR_syscalls = NR_syscalls  + 1
#include "calls.S"//将calls.S的内容包进来,CALL(x)上面已经有了定义,这里就相当于执行了多次NR_syscalls++,最后就统计了系统调用的个数,并对NR_syscalls进行了4的倍数对齐,这一招,特么好厉害!
#undef CALL //撤销CALL宏定义
#define CALL(x) .long x  //对CALL重新进行宏定义,也是4字节对齐
arch/arm/kernel/entry-common.S中:
sys_syscall:bic	scno, r0, #__NR_OABI_SYSCALL_BASEcmp	scno, #__NR_syscall - __NR_SYSCALL_BASEcmpne	scno, #NR_syscalls	@ check rangestmloia	sp, {r5, r6}		@ shuffle argsmovlo	r0, r1movlo	r1, r2movlo	r2, r3movlo	r3, r4ldrlo	pc, [tbl, scno, lsl #2]b	sys_ni_syscall
最终sys_poll()函数,就相当于下面的函数:在fs/select.c文件中,SYSCALL_DEFINE3是有3个参数的系统调用的宏定义
SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,long, timeout_msecs)
{......ret = do_sys_poll(ufds, nfds, to);//调用......
}
好,看看应用层调用poll函数时的底层驱动执行线路
【app:】
poll();
【kernel: 】
sys_polldo_sys_poll(struct pollfd __user *ufds, unsigned int nfds,struct timespec *end_time)poll_initwait(&table);init_poll_funcptr(&table->pt, __pollwait);-->pt->qproc = __pollwait; //初始化qproc函数指针,让他指向__pollwait函数do_poll(nfds, head, &table, end_time);for(;;){for (; pfd != pfd_end; pfd++) //查询多个驱动程序{if (do_pollfd(pfd, pt))  -> mask = file->f_op->poll(file, pwait);return mask;{ //do_pollfd函数相当于调用驱动里面的xxx_poll函数,下面另外再进行分析,返回值mask非零,count++,记录等待事件发生的进程数count++;pt = NULL;}}if (count || timed_out) //若count不为0(有等待的事件发生了)或者timed_out不为0(有信号发生或超时),则推出休眠break;//上述条件不满足下面开始进入休眠,若有等待的事件发生了,超时或收到信号则唤醒poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack)}
驱动里边的xxx_poll()函数分析
xxx_poll(struct file *file, poll_table *wait)poll_wait(file, &xxxx_waitq, wait);
//
static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
{if (p && wait_address)p->qproc(filp, wait_address, p); //调用之前poll_initwait()函数设置的函数qproc即__pollwait,__pollwait函数只是把当前进程挂到等待队列,只是add_wait_queue(wait_address, &entry->wait);不进入休眠
}

测试驱动程序:poll_dev.c

#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <linux/module.h>
#include <linux/device.h> 		//class_create
#include <mach/regs-gpio.h>		//S3C2440_GPF1 
#include <mach/hardware.h>
#include <linux/interrupt.h>	//wait_event_interruptible
#include <linux/fs.h>
#include <linux/poll.h>			//poll/* 定义并初始化等待队列头 */
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);static struct class *buttondev_class;
static struct device *buttons_device;static struct pin_desc{unsigned int pin;unsigned int key_val;
};static struct pin_desc pins_desc[4] = {{S3C2410_GPF1,0x01}, //S3C2410_GPF1是对GPF1引脚这种“设备”的编号dev_id{S3C2410_GPF4,0x02},{S3C2410_GPF2,0x03},{S3C2410_GPF0,0x04},
}; 
static int ev_press = 0;static unsigned char key_val;
int major;/* 中断处理函数 */
static irqreturn_t handle_irq(int irq, void *dev_id)
{struct pin_desc *irq_pindesc = (struct pin_desc *)dev_id;//unsigned int pinval;pinval = s3c2410_gpio_getpin(irq_pindesc->pin);//获取按键值:有按键按下返回按键值0/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 *//* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */if(pinval){/* 松开 */key_val = 0x80 | (irq_pindesc->key_val);}else{/* 按下 */key_val = irq_pindesc->key_val;}ev_press = 1;							/* 表示中断已经发生 */wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程 */return IRQ_HANDLED;
}static int buttons_dev_open(struct inode * inode, struct file * filp)
{/*  K1-EINT1,K2-EINT4,K3-EINT2,K4-EINT0*  配置GPF1、GPF4、GPF2、GPF0为相应的外部中断引脚*  IRQT_BOTHEDGE应该改为IRQ_TYPE_EDGE_BOTH*/request_irq(IRQ_EINT1, handle_irq, IRQ_TYPE_EDGE_FALLING, "K1",&pins_desc[0]);request_irq(IRQ_EINT4, handle_irq, IRQ_TYPE_EDGE_FALLING, "K2",&pins_desc[1]);request_irq(IRQ_EINT2, handle_irq, IRQ_TYPE_EDGE_FALLING, "K3",&pins_desc[2]);request_irq(IRQ_EINT0, handle_irq, IRQ_TYPE_EDGE_FALLING, "K4",&pins_desc[3]);return 0;
}static int buttons_dev_close(struct inode *inode, struct file *file)
{free_irq(IRQ_EINT1,&pins_desc[0]);free_irq(IRQ_EINT4,&pins_desc[1]);free_irq(IRQ_EINT2,&pins_desc[2]);free_irq(IRQ_EINT0,&pins_desc[3]);return 0;
}static ssize_t buttons_dev_read(struct file *file, char __user *user, size_t size,loff_t *ppos)
{if (size != 1)return -EINVAL;//wait_event_interruptible(button_waitq, ev_press);//使用poll机制,这里就不需要再判断要不要进入睡眠了。copy_to_user(user, &key_val, 1);/* 将ev_press清零 */ev_press = 0;return 1;	
}//关键点///
static unsigned int buttons_dev_poll(struct file *file, poll_table *wait) //该函数一旦被调用就触发poll机制
{unsigned int mask = 0;/* 该函数,只是将进程挂在button_waitq队列上,而不是立即休眠 */poll_wait(file, &button_waitq, wait); /**** 假设进程还poll在上面这一函数里边,尚未超时,假设此时有中断到来,中断处理程序将ev_press置位,然后唤醒休眠队列上对应的进程***//* 进程唤醒之后,立马往下执行。唤醒的可能原因:超时/中断处理 */if(ev_press){mask |= POLLIN | POLLRDNORM;  /* 有数据可读 */}/* 如果有按键按下时,mask |= POLLIN | POLLRDNORM,否则mask = 0 */return mask;  
}
////* File operations struct for character device */
static const struct file_operations buttons_dev_fops = {.owner		= THIS_MODULE,.open		= buttons_dev_open,.read		= buttons_dev_read,.release    = buttons_dev_close,.poll       = buttons_dev_poll,
};/* 驱动入口函数 */
static int buttons_dev_init(void)
{/* 主设备号设置为0表示由系统自动分配主设备号 */major = register_chrdev(0, "buttons_dev", &buttons_dev_fops);/* 创建buttondev类 */buttondev_class = class_create(THIS_MODULE, "buttondev");/* 在buttondev类下创建buttons设备,供应用程序打开设备*/buttons_device = device_create(buttondev_class, NULL, MKDEV(major, 0), NULL, "buttons");//return 0;
}/* 驱动出口函数 */
static void buttons_dev_exit(void)
{unregister_chrdev(major, "buttons_dev");device_unregister(buttons_device);  //卸载类下的设备class_destroy(buttondev_class);		//卸载类
}/* 模块加载和卸载函数的修饰 */
module_init(buttons_dev_init);  
module_exit(buttons_dev_exit); MODULE_AUTHOR("CLBIAO");
MODULE_DESCRIPTION("Just for Demon");
MODULE_LICENSE("GPL");  //遵循GPL协议

测试应用程序:app_poll.c

/* 文件的编译指令是arm-linux-gcc -static -o app_poll app_poll.c */
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <poll.h>/* fourth_test*/ 
int main(int argc ,char *argv[]){int fd;unsigned char key_val;struct pollfd fds;int ret;fd = open("/dev/buttons",O_RDWR);if (fd < 0){printf("open error\n");}fds.fd = fd;//查询的文件fds.events = POLLIN; //期待收到poll_in值,表示有数据while(1){/* A value of 0 indicates  that the call timed out and no file descriptors were ready* poll函数返回0时,表示5s时间到了,而这段时间里,没有事件发生"数据可读"*/ret = poll(&fds,1,5000);if(ret == 0){printf("time out\n");}else	/* 如果没有超时,则读出按键值 */{read(fd,&key_val,1);printf("key_val = 0x%x\n",key_val);} 	}return 0;
}
测试结果:



小结:poll流程图


















这篇关于字符设备之poll机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1051641

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取