Keras Notes: Keras安装与简介

2024-06-11 04:08
文章标签 安装 keras 简介 notes

本文主要是介绍Keras Notes: Keras安装与简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference: http://blog.csdn.net/mmc2015/article/details/50976776

先安装上再说:

sudo pipinstall keras


或者手动安装:

下载:Git clone git://github.com/fchollet/keras.git

传到相应机器上

安装:cd to the Keras folder and run the install command:

sudo python setup.py install



keras在theano之上,在学习keras之前,先理解了这几篇内容:

http://blog.csdn.NET/mmc2015/article/details/42222075(LR)

http://www.deeplearning.Net/tutorial/gettingstarted.html和http://www.deeplearning.net/tutorial/logreg.html(Classifying MNIST digits using Logistic Regression

总参考:http://www.deeplearning.net/tutorial/contents.html


以第一个链接中给出的代码为例(比较简单):

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. import numpy  
  2. import theano  
  3. import theano.tensor as T  
  4. rng = numpy.random  
  5.   
  6. N = 400                                   # training sample size  
  7. feats = 784                               # number of input variables  
  8.   
  9. # generate a dataset: D = (input_values, target_class)  
  10. D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))  
  11. training_steps = 10000  
  12.   
  13. # Declare Theano symbolic variables  
  14. x = T.matrix("x")  
  15. y = T.vector("y")  
  16.   
  17. # initialize the weight vector w randomly  
  18. #  
  19. # this and the following bias variable b  
  20. # are shared so they keep their values  
  21. # between training iterations (updates)  
  22. w = theano.shared(rng.randn(feats), name="w")  
  23.   
  24. # initialize the bias term  
  25. b = theano.shared(0., name="b")  
  26.   
  27. print("Initial model:")  
  28. print(w.get_value())  
  29. print(b.get_value())  
  30.   
  31. # Construct Theano expression graph  
  32. p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))   # Probability that target = 1  
  33. prediction = p_1 > 0.5                    # The prediction thresholded  
  34. xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function  
  35. cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize  
  36. gw, gb = T.grad(cost, [w, b])             # Compute the gradient of the cost  
  37.                                           # w.r.t weight vector w and  
  38.                                           # bias term b  
  39.                                           # (we shall return to this in a  
  40.                                           # following section of this tutorial)  
  41.   
  42. # Compile  
  43. train = theano.function(  
  44.           inputs=[x,y],  
  45.           outputs=[prediction, xent],  
  46.           updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))  
  47. predict = theano.function(inputs=[x], outputs=prediction)  
  48.   
  49. # Train  
  50. for i in range(training_steps):  
  51.     pred, err = train(D[0], D[1])  
  52.   
  53. print("Final model:")  
  54. print(w.get_value())  
  55. print(b.get_value())  
  56. print("target values for D:")  
  57. print(D[1])  
  58. print("prediction on D:")  
  59. print(predict(D[0]))  


我们发现,使用theano构建模型一般需要如下步骤:

0)预处理数据

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. # generate a dataset: D = (input_values, target_class)  

1)定义变量

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. # Declare Theano symbolic variables  

2)构建(图)模型

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. # Construct Theano expression graph  

3)编译模型,theano.function()

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. # Compile  

4)训练模型

5)预测新数据

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. # Train  

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. print(predict(D[0]))  


那么,theano和keras区别在哪呢?

http://keras.io/


原来是层次不同,keras封装的更好,编程起来更方便(调试起来更麻烦了。。);theano编程更灵活,自定义完全没问题,适合科研人员啊。

另外,keras和tensorFlow完全兼容。。。



keras有两种模型,序列和图,不解释。

我们看下keras构建模型有多快,以序列为例:

[python]  view plain copy
在CODE上查看代码片 派生到我的代码片
  1. from keras.models import Sequential  
  2. model = Sequential() #1定义变量  
  3.   
  4. from keras.layers.core import Dense, Activation  
  5. model.add(Dense(output_dim=64, input_dim=100, init="glorot_uniform")) #2构建图模型  
  6. model.add(Activation("relu"))  
  7. model.add(Dense(output_dim=10, init="glorot_uniform"))  
  8. model.add(Activation("softmax"))  
  9.   
  10. from keras.optimizers import SGD  
  11. model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True)) #3编译模型  
  12.   
  13. model.fit(X_train, Y_train, nb_epoch=5, batch_size=32#4训练模型  
  14.   
  15. objective_score = model.evaluate(X_test, Y_test, batch_size=32)  
  16.   
  17. classes = model.predict_classes(X_test, batch_size=32#5预测模型  
  18. proba = model.predict_proba(X_test, batch_size=32)  


最后给出keras架构,自己去学吧:

这篇关于Keras Notes: Keras安装与简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050152

相关文章

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

如何在pycharm安装torch包

《如何在pycharm安装torch包》:本文主要介绍如何在pycharm安装torch包方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录在pycharm安装torch包适http://www.chinasem.cn配于我电脑的指令为适用的torch包为总结在p

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的