本文主要是介绍Keras Notes: Keras安装与简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
reference: http://blog.csdn.net/mmc2015/article/details/50976776
先安装上再说:
sudo pipinstall keras
或者手动安装:
下载:Git clone git://github.com/fchollet/keras.git
传到相应机器上
安装:cd
to the Keras folder and run the install command:
sudo python setup.py install
keras在theano之上,在学习keras之前,先理解了这几篇内容:
http://blog.csdn.NET/mmc2015/article/details/42222075(LR)
http://www.deeplearning.Net/tutorial/gettingstarted.html和http://www.deeplearning.net/tutorial/logreg.html(Classifying MNIST digits using Logistic Regression)
总参考:http://www.deeplearning.net/tutorial/contents.html
以第一个链接中给出的代码为例(比较简单):
- import numpy
- import theano
- import theano.tensor as T
- rng = numpy.random
-
- N = 400
- feats = 784
-
-
- D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
- training_steps = 10000
-
-
- x = T.matrix("x")
- y = T.vector("y")
-
-
-
-
-
-
- w = theano.shared(rng.randn(feats), name="w")
-
-
- b = theano.shared(0., name="b")
-
- print("Initial model:")
- print(w.get_value())
- print(b.get_value())
-
-
- p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))
- prediction = p_1 > 0.5
- xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1)
- cost = xent.mean() + 0.01 * (w ** 2).sum()
- gw, gb = T.grad(cost, [w, b])
-
-
-
-
-
-
- train = theano.function(
- inputs=[x,y],
- outputs=[prediction, xent],
- updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
- predict = theano.function(inputs=[x], outputs=prediction)
-
-
- for i in range(training_steps):
- pred, err = train(D[0], D[1])
-
- print("Final model:")
- print(w.get_value())
- print(b.get_value())
- print("target values for D:")
- print(D[1])
- print("prediction on D:")
- print(predict(D[0]))
我们发现,使用theano构建模型一般需要如下步骤:
0)预处理数据
1)定义变量
2)构建(图)模型
3)编译模型,theano.function()
4)训练模型
5)预测新数据
那么,theano和keras区别在哪呢?
http://keras.io/
原来是层次不同,keras封装的更好,编程起来更方便(调试起来更麻烦了。。);theano编程更灵活,自定义完全没问题,适合科研人员啊。
另外,keras和tensorFlow完全兼容。。。
keras有两种模型,序列和图,不解释。
我们看下keras构建模型有多快,以序列为例:
- from keras.models import Sequential
- model = Sequential()
-
- from keras.layers.core import Dense, Activation
- model.add(Dense(output_dim=64, input_dim=100, init="glorot_uniform"))
- model.add(Activation("relu"))
- model.add(Dense(output_dim=10, init="glorot_uniform"))
- model.add(Activation("softmax"))
-
- from keras.optimizers import SGD
- model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True))
-
- model.fit(X_train, Y_train, nb_epoch=5, batch_size=32)
-
- objective_score = model.evaluate(X_test, Y_test, batch_size=32)
-
- classes = model.predict_classes(X_test, batch_size=32)
- proba = model.predict_proba(X_test, batch_size=32)
最后给出keras架构,自己去学吧:
这篇关于Keras Notes: Keras安装与简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!