FedAvg论文

2024-06-10 22:12
文章标签 论文 fedavg

本文主要是介绍FedAvg论文,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Communication-Efficient Learning of Deep Networks
from Decentralized Data
原code
Reproducing

通过阅读帖子进行的了解。

联邦平均算法就是最典型的平均算法之一。将每个客户端上的本地随机梯度下降和执行模型的平均服务器结合在一起。

联邦优化问题

  • 数据非独立同分布

  • 数据分布的不平衡性

  • 用户规模大

  • 通信有限

联邦平均算法

客户端与服务器之间的通信代价比较大,文中提出两种方法降低通信成本:

  • 增加并行性

  • 增加每个客户端计算量

首先提出FedSGD算法,本地执行多次FedSGD,得到FedAvg算法。

  • 选择一定比例客户端参与训练,而不是全部,因为全部的会比客户端的收敛速度慢,模型精度低

  • 该算法将计算量放在了本地客户端,服务器只用于聚合平均,可在平均步骤之前进行多次局部模型的更新,过多的本地迭代轮次会造成过拟合

代码复现

IID、Non-IID的含义:

  • 数据独立同分布,IID,Independent Identically Distribution,数据之间不相互影响,满足同一个分布。

    独立同分布数据,说明训练的样本点具有较好的总体代表性。

  • 非独立同分布,Non-IID,Non-Independent Identically Distribution,实际场景数据很难满足IID的前提假设。

依照帖子对代码文件的介绍,如下图所示:

在这里插入图片描述

我的本地电脑:如下图所示:

在这里插入图片描述

Fed.py

关键原理:Fed.py中的权重平均聚合算法,

def FedAvg(w):''':param w: 权重吗?是的,是包含多个用户端模型权重的列表,每个权重相当于一个字典,带有键值:return:'''w_avg = copy.deepcopy(w[0]) # 利用深拷贝获取初始w[0]for k in w_avg.keys(): # 遍历每个权重键for i in range(1, len(w)):w_avg[k] += w[i][k] # 累加w_avg[k] = torch.div(w_avg[k], len(w)) # 平均return w_avg

参考

【FedAvg论文笔记】&【代码复现】

这篇关于FedAvg论文的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049405

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 参考论文 无水印

持续更新中,2024年数学建模比赛思路代码论文都会发布到专栏内,只需订阅一次!  完整论文+代码+数据结果链接在文末!  订阅后可查看参考论文文件 第一问 1.1 问题重述 这个问题围绕的是华北山区的某乡村,在有限的耕地条件下,如何制定最优的农作物种植策略。乡村有 34 块露天耕地和 20 个大棚,种植条件包括粮食作物、蔬菜、水稻和食用菌。除了要考虑地块的面积、种植季节等,还要确保

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes

论文精读-Supervised Raw Video Denoising with a Benchmark Dataset on Dynamic Scenes 优势 1、构建了一个用于监督原始视频去噪的基准数据集。为了多次捕捉瞬间,我们手动为对象s创建运动。在高ISO模式下捕获每一时刻的噪声帧,并通过对多个噪声帧进行平均得到相应的干净帧。 2、有效的原始视频去噪网络(RViDeNet),通过探

2024年全国大学生数学建模A题借鉴论文

问题  1: 舞龙队的动态位置与速度计算 1. **螺旋线的几何建模**:根据题目描述,舞龙队沿着等距螺旋线前进。螺旋线的螺距为 55 cm, 需根据极坐标公式确定每节板凳的位置。 -  极坐标螺旋线方程:\( r = a + b\theta \), 其中  \( b \)  是螺距, 可以利用该方程计算 每秒舞龙队的各个节数的坐标。 2. **速度计算**:给定龙头的行进速度为 1 m/s ,