C++必修:探索C++的内存管理

2024-06-10 19:44
文章标签 c++ 内存 管理 探索 必修

本文主要是介绍C++必修:探索C++的内存管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✨✨ 欢迎大家来到贝蒂大讲堂✨✨

🎈🎈养成好习惯,先赞后看哦~🎈🎈

所属专栏:C++学习
贝蒂的主页:Betty’s blog

1. C/C++的内存分布

我们首先来看一段代码及其相关问题

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
}

选择题:

选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

  1. globalVar在哪里?C staticGlobalVar在哪里?C
  • 解析:globalVar为全局变量放在数据段(静态区),staticGlobalVar也是全局变量放在数据段(静态区)。两者之间主要区别在:普通全局变量作用于整个代码,可被其他文件访问或修改。而被static修饰的静态全局变量只作用于当前文件,其他文件不可见。
  1. staticVar在哪里?C localVar在哪里?A
  • 解析:被static修饰的局部变量staticVar放在静态区,普通的局部变量localVar放在栈区。两者之间主要区别在:被static修饰的局部变量的生命周期只会在程序结束后结束,而普通的局部变量的生命周期出了当前作用域就会结束。
  1. num1 在哪里?A
  • 解析:num1也是一个局部变量,放在栈区。
  1. char2在哪里?A *char2在哪里?A
  • 解析:char2也是一个局部变量,放在栈区,常量字符串"abcd"放在代码段(常量区),数组开辟的空间放在栈区。在数组开辟时,常量字符串中字符会被一个一个拷贝进入数组,而数组名是首元素地址,所以*char2得到数组第一个元素,放在栈区。
  1. pChar3在哪里?A *pChar3在哪里?D
  • 解析:char2也是一个局部指针变量,指向一个放在代码段(常量区)的常量字符串"abcd"。所以*pChar3得到常量字符串的第一个字符,放在代码段(常量区)。
  1. ptr1在哪里?A *ptr1在哪里?B
  • 解析:ptr1是一个局部指针变量,放在栈区。而其指向的内存区域是由动态内存开辟的,所以*ptr1放在堆区。

img

  1. 栈区:又叫堆栈,存放非静态局部变量/函数参数/返回值等等,并且栈是向下增长的 。
  2. 堆区:一般由程序员分配释放, 若程序员不释放,会造成内存泄漏,并且堆是向上增长的
  3. **内存映射段:**是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存,做进程间通信。
  4. 数据段(静态区):存放全局变量、静态数据。程序结束后由系统释放。
  5. 代码段(常量区):存放函数体(类成员函数和全局函数)的二进制代码与只读常量。
  1. 填空题:
  1. sizeof(num1) = 40;
  • sizeof(数组名)计算的是整个数组的大小,4×10=40
  1. sizeof(char2) = 5; strlen(char2) = 4;
  • sizeof(数组名)计算的是整个数组的大小,包括'\0'。strlen不包括'\0'
  1. sizeof(pChar3) = 4/8; strlen(pChar3) = 4;
  • pChar3是指针变量,在32位平台下是4个字节,在64位平台下为8个字节。
  1. sizeof(ptr1) = 4/8;
  • ptr1是指针变量,在32位平台下是4个字节,在64位平台下为8个字节。

问答题:

  1. 数据结构中的栈与内存管理中的栈有什么联系吗?
  • 两者之间并没有太大联系。在数据结构中栈是一种线性数据结构,它的特点是后进先出(LIFO,Last In First Out)。而在内存管理中,栈是一种用于存储函数调用、局部变量、函数参数以及函数调用上下文等信息的内存区域,但是每次调用函数时,系统都会在栈顶添加一个栈帧,用于记录函数的上下文信息。在递归函数中,向下递推阶段会不断执行“入栈”操作,而向上回溯阶段则会执行“出栈”操作,这一点与数据结构栈的操作非常类似。
  1. 数据结构中的堆与内存管理中的堆有什么联系吗?
  • 尽管它们都被称为“堆”,但数据结构中的堆和内存管理中的堆其实是两个完全不同的概念,它们之间并没有直接的联系。在数据结构中,堆是一种特殊的树形数据结构,通常是一个完全二叉树,其中每个节点的值都大于等于(或小于等于)其子节点的值。计算机系统内存中的堆是动态内存分配的一部分,程序在运行时可以使用它来存储数据。程序员可以请求一定量的堆内存,用于存储如对象和数组等复杂结构。当这些数据不再需要时,程序员需要释放这些内存,以防止内存泄露。

2. C语言中的内存管理

2.1.1. malloc
  1. 头文件#include <stdlib.h>
  2. 声明:void* malloc (size_t size);
  • size – 内存块的大小,以字节为单位
  • 如果参数 size 为0,malloc的⾏为是标准是未定义的,取决于编译器。
  1. 作用:向内存申请⼀块连续可⽤的空间,并返回指向这块空间的指针
  • 如果开辟成功,则返回⼀个指向开辟好空间的指针。
  • 如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
  1. 返回值:返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使⽤的时候使⽤者⾃⼰来决定。
int* ptr1 = (int*)malloc(sizeof(int));//申请大小为一个整型的空间
if (ptr1 == NULL)//检查是否分配失败
{perror("malloc fail:");return;
}
2.1.2. calloc
  1. 头文件:#include <stdlib.h>
  2. 声明:void *calloc(size_t nitems, size_t size)
  • nitems – 要被分配的元素个数。
  • size – 元素的大小。
  1. 作用: 分配所需的内存空间,并返回一个指向它的指针

  2. 返回值:该函数返回一个指针,指向已分配的内存。如果请求失败,则返回 NULL。

  • malloccalloc 之间的不同点是,malloc 不会设置内存为零,而 calloc会初始化分配的内存为零。
	int* ptr2 = (int*)calloc(10,sizeof(int));//分配10个大小为整型的空间,并初始化为0if (ptr2 == NULL)//检查是否分配失败{perror("calloc fail:");return;}
2.1.3. realloc
  1. 头文件:#include <stdlib.h>
  2. 声明:void *realloc(void *ptr, size_t size)
  • ptr – 指针指向一个要重新分配内存的内存块,该内存块之前是通过调用 malloc、calloc 或 realloc 进行分配内存的。如果为空指针,则会分配一个新的内存块,且函数返回一个指向它的指针。
  • size – 内存块的新的大小,以字节为单位。如果大小为 0,且 ptr 指向一个已存在的内存块,则 ptr 所指向的内存块会被释放,并返回一个空指针。
  1. 作用:尝试重新调整之前调用 malloccalloc 所分配的 ptr 所指向的内存块的大小。

  2. 返回值:该函数返回一个指针 ,指向重新分配大小的内存。如果请求失败,则返回 NULL。

	int* ptr3 = (int*)malloc(sizeof(int));if (ptr3 == NULL)//检查是否分配失败{perror("malloc fail:");return;}int* tmp = (int*)realloc(ptr3, sizeof(int) * 10);//重新分配内存if (tmp == NULL)//检查是否分配失败{perror("realloc fail:");return;}ptr3 = tmp;//重新指向那块空间

3. C++中的内存管理

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过newdelete操作符进行动态内存管理。

3.1. new与delete操作内置类型

使用new与delete操作内置类型十分简单,我们直接通过代码示例:

void TestNew1()
{//开辟一个整型大小的空间int* ptr1 = new int;//开辟一个整型大小的空间并初始化为1int* ptr2 = new int(1);//开辟一个双精度浮点型大小的空间double* ptr3 = new double;//开辟一个双精度浮点型大小的空间并初始化为0.1double* ptr4 = new double(0.1);//以此内推......//与C语言free功能类似,释放空间防止内存泄漏delete ptr1;delete ptr2;delete ptr3;delete ptr4;
}

除了开辟整型,浮点型这类空间外,我们还能动态开辟数组。

void TestNew2()
{//开辟大小为10个整型的数组int* ptr1 = new int[10];//开辟大小为10个整型的数组,并初始化int* ptr2 = new int[10] {1, 2, 3, 4};//开辟大小为10个双精度浮点型的数组double* ptr3 = new double[10];//开辟大小为10个双精度浮点型的数组,并初始化double* ptr4 = new double[10] {0.1,0.2,0.3,0.4};//数组释放空间需要使用 delete[]delete[] ptr1;delete[] ptr2;delete[] ptr3;delete[] ptr4;}

注意:

  • new单个类型与new一个数组,释放空间要分别与delete和delete[]配套使用,否则可能出现未知的结果。
  • 在动态内存开辟数组时初始化与C语言数组初始化一样,未注明该初始化某个数值时,默认为0。并且对动态内存开辟数组时初始化是C++11支持的。

img

3.2. new与delete操作自定义类型

new/delete操作内置类型其实与C语言中的malloc/free并没有本质的区别,但是自定义类型就不一样了。请看下面这段代码。

class Betty
{
public:Betty(){cout << "Betty()" << endl;}~Betty(){cout << "~Betty()" << endl;}
private:int _b;
};
void TestNew3()
{Betty* ptr1 = (Betty*)malloc(sizeof(Betty));Betty* ptr2 = new Betty;free(ptr1);delete ptr2;
}

img

  • 从这里我们就知道:new创建自定义类型时会自动调用其构造函数,delete释放其空间时会自动调用其析构函数。

3.3. operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符,而operator new 和operator delete是系统提供的全局函数,并且operator new和operator delete也不是对new和delete的重载,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。以下是operator new与operator delete函数的源代码:

void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid* p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{_CrtMemBlockHeader* pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK); /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg(pUserData, pHead->nBlockUse);__FINALLY_munlock(_HEAP_LOCK); /* release other threads */__END_TRY_FINALLYreturn;
}

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常operator delete 最终是通过free来释放空间的

void TestNew4()
{Betty* ptr1 = (Betty*)malloc(sizeof(Betty));Betty* ptr2 = (Betty*)operator new(sizeof(Betty));free(ptr1);operator delete (ptr2);
}
  • 通过观察我们发现operator new与operator delete函数对于自定义类型一样不会调用其构造函数与析构函数。

3.4. new与delete的实现

通过上述的学习之后,我们就可以来简单探究一下new与delete的实现原理,请看下面这段代码:

void TestNew5()
{int* ptr1 = new int;//内置类型Betty* ptr2 = new Betty;//自定义类型delete ptr1;delete ptr2;
}

我们可以通过查看反汇编来具体观察new与delete是如何运作的:

img

img

通过观察我们总结出以下这些规律:

  1. 对于内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:new / delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

  1. 对于自定义类型
  1. new的原理
  • 调用operator new函数申请空间
  • 在申请的空间上执行构造函数,完成对象的构造
  1. delete的原理
  • 在空间上执行析构函数,完成对象中资源的清理工作
  • 调用operator delete函数释放对象的空间
  1. new T[N]的原理
  • 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
  • 在申请的空间上执行N次构造函数
  1. delete[]的原理
  • 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  • 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

3.5. 定位new表达式

我们知道我们可以在类外直接显示调用析构函数,但是无法直接调用构造函数。如果想在类外调用,则需要使用定位new,定位new简单来说就是**对已分配的原始内存空间中调用构造函数初始化一个对象。**其语法形式如下:

new (place_address) type或者new(place_address) type(initializer - list)

place_address必须是一个指针,initializer - list是类型的初始化列表

class A
{
public:A(int a = 0):_a(a){cout << "A(int a = 0):"<<_a << endl;}~A(){cout << "~A()" << endl;}
private:int _a;
};
void TestNew6()
{A* p1 = (A*)malloc(sizeof(A));// 注意:如果A类的构造函数有参数时,此处需要传参new(p1)A; p1->~A();free(p1);A* p2 = (A*)operator new(sizeof(A));new(p2)A(10);p2->~A();operator delete(p2);
}

img

4. malloc/free和new/delete的区别

malloc / free和new / delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地方是:

  1. malloc和free是函数,new和delete是操作符。
  2. malloc申请的空间不会初始化,new可以初始化。
  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,如果是多个对象,[]中指定对象个数即可。
  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型。
  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需要捕获异常。
  6. 申请自定义类型对象时,malloc / free只会开辟空间,不会调用构造函数与析构函数,而new在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成空间中资源的清理。

这篇关于C++必修:探索C++的内存管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1049095

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、