(南京观海微电子)——温度对TFT影响及改善方式

2024-06-10 03:12

本文主要是介绍(南京观海微电子)——温度对TFT影响及改善方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温度如何损坏 LCD?

这个工作温度范围会影响设备内的电子部分,超出范围会导致 LCD 技术在高温下过热或在寒冷时变慢。 至于液晶层,如果放在高温下,它会变质,导致它和显示器本身出现缺陷。

LCD 温度限制: 什么温度太热太冷

为了避免 LCD 面板出现缺陷,应牢记标准商用 LCD 的操作范围和存储范围。 如果没有自适应功能,典型的 LCD 电视的工作范围从 0°C (32°F) 的冷极限到 50°C (122°F) 的热极限(其他 LCD 设备的范围可能与这些略有不同)数)。

存储范围稍宽一些,从 -20°C (-4°F) 到 60°C (140°F)。 尽管这些范围对于许多室内甚至室外区域来说都是相当合理的,但也有不少地区的温度可能会降至 0°C 以下或升至 32°C 以上,在这些条件下,必须对 LCD 进行调整以确保其功能正常。

TFT显示屏中温度耐受性的重要性

TFT显示屏的耐温性至关重要,原因如下:

性能:极端温度会导致 TFT 显示屏所用材料的电气性能发生变化,从而影响其性能。这可能会导致诸如图像残留(即使设备关闭后静态图像仍保留在屏幕上)等问题,或色彩偏移(屏幕上显示的颜色出现扭曲或褪色)等问题。

寿命长:长时间暴露在高温下可能会对 TFT显示屏的组件造成永久性损坏,从而缩短使用寿命并增加故障风险。对于有机发光二极管 (OLED) 显示器来说尤其如此,它比其他类型的 TFT显示屏对高温更敏感。

随着温度的升高,自由电子和空穴的浓度增加,间隙宽度减小,电子迁移率降低。
高温会使芯片的蓝光峰值向长波方向偏移,使芯片的波长与荧光粉的波长不匹配,从而降低了LCD外部的出光效率。
温度升高时,荧光粉的量子效率降低,LCD的发光降低,导致LCD屏幕亮度降低。
温度对硅胶制品的形状影响很大。随着温度的升高,硅胶的内热增加,硅胶的折射率会降低,从而影响LCD屏幕的发光效率。

在低温下,液晶分子的热运动减弱,导致分子排列的稳定性增加。这可能会导致液晶分子的排列变得不均匀,从而影响液晶屏的显示效果。低温还可能导致液晶分子的流动性降低,进一步影响液晶屏的响应速度和刷新率。

在极端低温下,液晶屏可能出现图像残留、黑屏、反应迟缓等问题。这是因为低温下液晶分子的排列不均匀,导致电场作用无法准确控制液晶分子的排列,进而影响图像的显示。低温还可能导致液晶屏的亮度降低,使得图像显示变得暗淡。

低温对液晶屏的影响主要体现在液晶分子的排列和运动上,进而影响液晶屏的显示效果。

分析结果及讨论

需对液晶显示器进行低温试验,以保证其能在-40 益 环境下 5 min 内正常工作。 液晶显示器采用定流加热 方式[6] ,当传感器探测温度大于 0 益 时,控制电路停 止加热。 根据计算,在 5 min 内显示器为全功率加热, 加热功耗为 210 W。 当环境温度为-40 益 、加热功耗 为 210 W 时,液晶屏上的温度分布如图 5 所示。

                                                        图 5 温度分布结果

液晶屏上温度最高点及温度最低点在 5 min 内的 温度变化曲线如图 6 所示。

图 6 温度变化曲线

从图 5 和图 6 可以看出,当环境温度为-40 益 并 采用全功耗加热 5 min 时,液晶屏组件的整体温度较 高,显示面积 80% 区域的温度在-20 益 以上,液晶屏 大部分区域可正常工作。 液晶屏温度最高点在屏中心 位置,温度为 3. 3 益 ,液晶屏周边及四角温度较低,最 低温度为-34. 4 益 。 在整个加热过程中液晶屏中心位置温度上升较快,随着加热时间的持续,增幅越来越 小。 四角处温度一直较低,且增长缓慢。 加热至 5 min 时,液晶屏中心温度与四角处温度 差为 37. 7 益 。 加热过程中温差较大的原因分析如下: 1)加热器是均匀面电阻,在各单位面积上发热量 相等,在加热过程中热量会向中部积聚,其结果为中部 温升较大。 2)由于屏组件周边固定在结构件上,因此热量可 以通过结构件传导,再辐射到低温环境中,使周边保持 较低温度。

改善

液晶屏的解决方案

1.优化散热设计:加强液晶屏的散热系统,通过增加散热片、风扇等散热设备,确保液晶显示面板在工作过程中能够及时散发热量,降低温度。

2.选用耐高温材料:在液晶屏的制造过程中,选用能够承受更高温度的液晶材料和电子元件,以提高产品的耐高温性能。

3.合理控制工作环境温度:尽量将液晶屏安装在温度适宜的环境中,避免长时间暴露在高温或阳光直射的地方。

这篇关于(南京观海微电子)——温度对TFT影响及改善方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1047064

相关文章

如何突破底层思维方式的牢笼

我始终认为,牛人和普通人的根本区别在于思维方式的不同,而非知识多少、阅历多少。 在这个世界上总有一帮神一样的人物存在。就像读到的那句话:“人类就像是一条历史长河中的鱼,只有某几条鱼跳出河面,看到世界的法则,但是却无法改变,当那几条鱼中有跳上岸,进化了,改变河道流向,那样才能改变法则。”  最近一段时间一直在不断寻在内心的东西,同时也在不断的去反省和否定自己的一些思维模式,尝试重

idea lanyu方式激活

访问http://idea.lanyus.com/这个地址。根据提示将0.0.0.0 account.jetbrains.com添加到hosts文件中,hosts文件在C:\Windows\System32\drivers\etc目录下。点击获得注册码即可。

以canvas方式绘制粒子背景效果,感觉还可以

这个是看到项目中别人写好的,感觉这种写法效果还可以,就存留记录下 就是这种的背景效果。如果想改背景颜色可以通过canvas.js文件中的fillStyle值改。 附上demo下载地址。 https://download.csdn.net/download/u012138137/11249872

chart 完成拓扑图单节点拖拽不影响其他节点位置

就是做这种的功能,箭头原本是可以动态重复移动的,但不知道哪里问题导致没箭头了,然后补了个edgeSymbol: ['','arrow'], 字段,才增加了箭头。 拖拽某个节点,只有关联到的线条会跟着变动其他的节点位置不变。 参考 https://gallery.echartsjs.com/editor.html?c=x8Fgri22P9 https://echarts.baidu.com/exa

vue同页面多路由懒加载-及可能存在问题的解决方式

先上图,再解释 图一是多路由页面,图二是路由文件。从图一可以看出每个router-view对应的name都不一样。从图二可以看出层路由对应的组件加载方式要跟图一中的name相对应,并且图二的路由层在跟图一对应的页面中要加上components层,多一个s结尾,里面的的方法名就是图一路由的name值,里面还可以照样用懒加载的方式。 页面上其他的路由在路由文件中也跟图二是一样的写法。 附送可能存在

vue子路由回退后刷新页面方式

最近碰到一个小问题,页面中含有 <transition name="router-slid" mode="out-in"><router-view></router-view></transition> 作为子页面加载显示的地方。但是一般正常子路由通过 this.$router.go(-1) 返回到上一层原先的页面中。通过路由历史返回方式原本父页面想更新数据在created 跟mounted

二叉树三种遍历方式及其实现

一、基本概念 每个结点最多有两棵子树,左子树和右子树,次序不可以颠倒。 性质: 1、非空二叉树的第n层上至多有2^(n-1)个元素。 2、深度为h的二叉树至多有2^h-1个结点。 3、对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0 = n2 + 1。 满二叉树:所有终端都在同一层次,且非终端结点的度数为2。 在满二叉树中若其深度为h,则其所包含

七种排序方式总结

/*2018.01.23*A:YUAN*T:其中排序算法:冒泡排序,简单排序,直接插入排序,希尔排序,堆排序,归并排序,快速排序*/#include <stdio.h>#include <math.h>#include <malloc.h>#define MAXSIZE 10000#define FALSE 0#define TRUE 1typedef struct {i

逆向学习汇编篇:内存管理与寻址方式

本节课在线学习视频(网盘地址,保存后即可免费观看): ​​https://pan.quark.cn/s/3ceeb9ae6d98​​ 在汇编语言的世界中,内存管理和寻址方式是构建程序的基础。理解这些概念不仅对于编写高效的汇编代码至关重要,也是进行逆向工程分析的关键技能。本文将深入探讨内存管理的基本原则和多种寻址方式,并通过代码案例来展示它们的实际应用。 1. 内存管理 内存管理涉及如何分配

IOS 数组去重的几种方式

本来只知道NSSet和KeyValues的。今天又新学了几种方式 还有就是和同事学的一种方式 外层循环从0开始遍历,内层从最后一个元素开始遍历 for(int i=0;i<index;i++){  for(int j=index-1;j>i;j-- ){ } }