Spark参数配置不合理的情况

2024-06-10 00:28

本文主要是介绍Spark参数配置不合理的情况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.1 内存设置 💾

常见的内存设置有两类:堆内和堆外 💡

我们作业中大量的设置 driver 和 executor 的堆外内存为 4g,造成资源浪费 📉。

通常 executor 堆外内存在 executor.cores=1 的时候,1g 足够了,正常来说最大值不超过 2g;driver 1g-2g 足够了 ✅。

注意:如果有 c++ 库这种计算,executor 堆外内存可以保持原有配置。 📚

各版本推荐配置的 key 以及配置值各版本不推荐配置的 key 及配置值过去无效配置,建议删除 🚫
driver 堆内 💽–conf spark.driver.memory=6G
driver 堆外 💾–conf spark.driver.memoryOverhead=2G–conf spark.yarn.driver.memoryOverhead=4g–conf spark.yarn.driver.direct*
executor 堆内 💽–conf spark.executor.memory=3G
executor 堆外 💾–conf spark.executor.memoryOverhead=1G–conf spark.yarn.executor.memoryOverhead=4g–conf spark.yarn.executor.direct*
1.2 动态资源调度相关参数 📊

不开启动态资源管理或者参数设置不合理,会导致明显的资源浪费 💸:
涉及到动态资源调度的参数主要有以下几个 📝:

参数名 🛠️默认值 ⚙️作用 🧐错误使用案例 🚫使用建议 🌟
spark.dynamicAllocation.enabled ✅false开启资源动态能力,在 executor 空闲时可以释放,需要资源是发起请求不开启开启资源动态功能,尤其是运行时间比较长或者有数据倾斜的情况 🌟
spark.dynamicAllocation.executorIdleTimeout ⏲️60sexecutor 空闲多久开始释放资源30000 或者 1200s 过大的数值 🚫60s-120s 🌟
spark.dynamicAllocation.minExecutors 📉0最小持有的 executor 数,到达该值,空闲也不会释放200 🚫推荐设置为 1-5 🌟
spark.dynamicAllocation.maxExecutors 📈infinity作业申请 executor 资源的最大值1000 以上 🚫通常最大值建议 256-500 即可,小作业可以更小的设置 🌟

1.3 序列化参数 📝

Spark 中序列化主要有两种,java、kryo。相对来说 kryo 序列化效率更高,作为推荐 💡:

1 spark.serializer org.apache.spark.serializer.KryoSerializer

与 kryo 相关的设置有 📊:

1 spark.kryoserializer.buffer,默认值 64k,这个不需要设置,设置值过大会常驻
2 spark.kryoserializer.buffer.max,默认值 64m

不需要设置 spark.kryoserializer.buffer,默认的 buffer 会在 64k 到 64m 动态伸缩,没有特殊需要不需要设置,如果数据比较大,设置 spark.kryoserializer.buffer.max

1.4 并行度设置 ⚙️

在这里插入图片描述

常见的并行度配置有两个 🔧:

  1. spark.default.parallelism 默认值:会继承上游 stage 的并行度,主要用于 rdd 的 shuffle 操作
  2. spark.sql.shuffle.partitions 默认值 200,主要用于 sql 的 shuffle 操作

算法作业绝大多数是 rdd 操作,合理设置并行度,事半功倍 💪,后面会专门介绍怎么优化自己的并行度设置 🌟

spark.default.parallelism 不建议设置的非常大。 🚫

这篇关于Spark参数配置不合理的情况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046726

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了