C语言:双链表

2024-06-10 00:20
文章标签 语言 双链

本文主要是介绍C语言:双链表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是双链表?

双链表,顾名思义,是一种每个节点都包含两个链接的链表:一个指向下一个节点,另一个指向前一个节点。这种结构使得双链表在遍历、插入和删除操作上都表现出色。与单链表相比,双链表不仅可以从头节点开始遍历,还可以从尾节点开始遍历,甚至从中间某个节点开始双向遍历。

二、双链表的特点

双向性:每个节点都包含两个指针,一个指向前一个节点,一个指向后一个节点。这使得双链表在遍历上更加灵活。
动态性:链表的大小可以根据需要动态地增加或减少,无需预先分配固定大小的内存空间。
三、实现双链表

typedef int LTDataType;
typedef struct ListNode
{LTDataType data;struct ListNode* next;struct ListNode* prev;
}LTNode;

三、实现的功能

LTNode* LTInit();// 初始化双链表
void LTDestroy(LTNode* phead);//销毁
void LTPrint(LTNode* phead);//打印
bool LTEmpty(LTNode* phead);//判断链表是否为空·void LTPushBack(LTNode* phead, LTDataType x);//尾插
void LTPopBack(LTNode* phead);//尾删void LTPushFront(LTNode* phead, LTDataType x);//头插
void LTPopFront(LTNode* phead);//头删
//在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x);
void LTErase(LTNode* pos);//指定删除
LTNode* LTFind(LTNode* phead, LTDataType x);//查找

 1.创建节点

// 创建新的双链表节点  
LTNode* LTBuyNode(LTDataType x) {  LTNode* newNode = (LTNode*)malloc(sizeof(LTNode));  if (newNode == NULL) {  perror("malloc fail!");  exit(1);  }  newNode->data = x;  newNode->next = NULL;  newNode->prev = NULL;  return newNode;  
}  

使用malloc函数在堆上动态地分配内存空间,以存储LTNode结构体的大小。
检查malloc是否成功分配了内存。如果返回NULL,表示内存分配失败,此时调用perror函数打印错误消息,并使用exit(1)退出程序。
如果内存分配成功,将新节点的数据成员data设置为参数x的值。
初始化新节点的next和prev指针为NULL,表示这个新节点在创建时并不指向任何其他的节点。
返回指向新创建节点的指针。

2.初始化

LTNode* LTInit() {  LTNode* pheda = LTBuyNode(-1); // 使用-1作为哨兵位头节点的数据  pheda->next = pheda; // 指向自己,表示链表为空  pheda->prev = pheda;  return pheda;  
}

 3.双链表的尾插

void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);// 创建一个新节点newnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;}

newnode->prev = phead->prev; 将新节点的prev指针设置为当前链表的尾节点。
newnode->next = phead; 将新节点的next指针设置为头节点。

phead->prev->next = newnode; 更新当前尾节点的next指针,使其指向新节点。
phead->prev = newnode; 更新头节点的prev指针,使其指向新节点

4.双链表的尾删

//尾删
void LTPopBack(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->prev;del->prev->next = phead;phead->prev = del->prev;free(del);del = NULL;
}

prev指针指向链表的最后一个节点

del->prev->next = phead; 和 phead->prev = del->prev; 这两行代码更新了链表的链接,将尾节点从链表中移除。

 5.双链表的头插

//头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);newnode ->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;
}

newnode ->next = phead->next;将新节点的next指针指向当前链表的第一个节点

newnode->prev = phead;将新节点的prev指针指向链表的头节点

phead->next->prev = newnode;更新当前链表第一个节点的prev指针,使其指向新节点。

phead->next = newnode;:更新链表的头节点的next指针,使其指向新节点,这样新节点就成为了链表的第一个节点。

6.双链表的头删

void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->next;phead->next = del->next;phead->next->prev = phead;free(del);del = NULL;}

 LTNode* del = phead->next;:将待删除的节点的地址赋给del指针。
phead->next = del->next;:更新链表的头节点的next指针,使其跳过待删除的节点,直接指向下一个节点。
phead->next->prev = phead;:由于我们刚刚更新了phead->next,现在它指向的是原第一个节点的下一个节点。我们将这个新节点的prev指针更新为指向链表的头节点。

7.双链表的打印 

void LTPrint(LTNode* phead)
{LTNode* pcur = phead->next;while (pcur != phead){printf("%d ", pcur->data);pcur = pcur->next;}printf("\n");
}

8.在pos位置之后插入数据

void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);	newnode-> next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}

9.指定删除     

void LTErase(LTNode* pos)
{assert(pos);assert(pos != pos->next);pos->prev->next = pos->next;// 更新pos的前一个节点的next指针pos->next->prev = pos->prev;//更新pos的下一个节点的prev指针free(pos);pos = NULL;
}

 10.判空

bool LTEmpty(LTNode* phead)
{return phead->next == phead;
}

 11.销毁

//销毁
void LTDestroy(LTNode* phead)
{LTNode* cur = phead->next;while (cur != phead){LTNode* tmp = cur;cur = cur->next;free(tmp);}free(phead);
}

四、全部源码

LTNode* LTBuyNode(LTDataType x)
{LTNode* Node = (LTNode*)malloc(sizeof(LTNode));if (Node == NULL){perror("malloc fail!");exit(1);}Node->data = x;Node->next = NULL;  Node->prev = NULL;   return Node;
}
LTNode* LTInit() {LTNode* pheda = LTBuyNode(-1); // 使用-1作为哨兵头节点的数据  pheda->next = pheda; // 指向自己,表示链表为空  pheda->prev = pheda;  return pheda;
}//销毁
void LTDestroy(LTNode* phead)
{LTNode* cur = phead->next;while (cur != phead){LTNode* tmp = cur;cur = cur->next;free(tmp);}free(phead);
}
//打印
void LTPrint(LTNode* phead)
{LTNode* pcur = phead->next;while (pcur != phead){printf("%d ", pcur->data);pcur = pcur->next;}printf("\n");
}
//判断链表是否为空·
bool LTEmpty(LTNode* phead)
{return phead->next == phead;
}
//尾插
void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);newnode->prev = phead->prev;newnode->next = phead;phead->prev->next = newnode;phead->prev = newnode;}
//尾删
void LTPopBack(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->prev;del->prev->next = phead;phead->prev = del->prev;free(del);del = NULL;
}//头插
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);newnode ->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;
}
//头删
void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);LTNode* del = phead->next;phead->next = del->next;phead->next->prev = phead;free(del);del = NULL;}
//查找LTNode* LTFind(LTNode* phead, LTDataType x)
{LTNode* cur = phead->next;while (cur != phead){if (cur->data == x){return cur;}cur=cur->next;}return NULL;
}在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);	newnode-> next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}//指定删除
void LTErase(LTNode* pos)
{assert(pos);assert(pos != pos->next);pos->prev->next = pos->next;pos->next->prev = pos->prev;free(pos);pos = NULL;
}

五、结语 

让我们一起在编程的道路上不断前行,创造更加美好的未来!

这篇关于C语言:双链表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046718

相关文章

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st