Python进阶-部署Flask项目(以TensorFlow图像识别项目WSGI方式启动为例)

本文主要是介绍Python进阶-部署Flask项目(以TensorFlow图像识别项目WSGI方式启动为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文详细介绍了如何通过WSGI方式部署一个基于TensorFlow图像识别的Flask项目。首先简要介绍了Flask框架的基本概念及其特点,其次详细阐述了Flask项目的部署流程,涵盖了服务器环境配置、Flask应用的创建与测试、WSGI服务器的安装与配置等内容。本文旨在帮助读者掌握Flask项目的部署方法,解决在部署过程中可能遇到的问题,确保项目能够稳定高效地运行。

一、Flask简介

Flask是一个轻量级的Web应用框架,由Python语言编写。它是基于Werkzeug WSGI工具包和Jinja2模板引擎的,并且采用BSD许可证。Flask的设计哲学是“微核”,也就是说其核心保持简洁,功能通过扩展实现。这使得Flask非常灵活,能够满足从小型单一页面应用到大型复杂项目的不同需求。

Flask的主要特点包括:

  1. 轻量级和灵活:Flask仅提供核心功能,开发者可以根据需要引入各种扩展。
  2. 易于学习和使用:Flask的API设计非常简洁明了,即使是初学者也能快速上手。
  3. 强大的扩展能力:Flask的生态系统中有许多可用的扩展,可以轻松添加数据库、表单验证、用户认证等功能。
  4. 社区支持:Flask拥有活跃的社区,大量的教程和文档可以帮助开发者解决问题。

二、Flask项目部署流程

1. 准备工作

在开始部署Flask项目之前,需要完成以下准备工作:

① 服务器安装Anaconda

Anaconda是一个用于科学计算的Python发行版,支持多种数据科学包的快速安装。它还包含了Conda,这是一种包管理器和环境管理器,能够轻松创建和管理不同的Python环境。

首先,下载并安装Anaconda。可以从Anaconda官网下载适用于Windows的安装包。安装过程非常简单,按照提示进行即可。

② Anaconda创建Python环境

安装完成后,使用Conda创建一个新的Python环境。这可以帮助你隔离项目的依赖,确保环境的一致性。打开终端(或命令提示符),输入以下命令创建一个名为opencv的环境,并指定Python版本:

conda create -n opencv python=3.8

创建完成后,激活这个环境:

conda activate opencv

在这里插入图片描述

③ Anaconda环境安装相关包

在激活的环境中,安装Flask、Flask-CORS、TensorFlow、scikit-learn和OpenCV等必要的包:

conda install flask flask-cors tensorflow scikit-learn opencv

这些包包含了构建和运行Flask应用及其依赖的所有工具。

2. 创建Flask应用

在本地编写并测试Flask应用代码。以下是一个简单的Flask应用示例,它使用TensorFlow的MobileNetV2模型进行图像分类和相似度计算:

from flask import Flask, request, jsonify
from flask_cors import CORS
import numpy as np
import cv2
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from sklearn.metrics.pairwise import cosine_similarityapp = Flask(__name__)
CORS(app)# 加载预训练的MobileNetV2模型
model = MobileNetV2(weights='imagenet', include_top=True)def classify_image(img):img = cv2.resize(img, (224, 224))  # MobileNetV2的输入尺寸为224x224x = image.img_to_array(img)x = np.expand_dims(x, axis=0)x = preprocess_input(x)preds = model.predict(x)return decode_predictions(preds, top=1)[0][0][1], model.predict(x)  # 返回类别名称和特征向量def calculate_similarity(feature1, feature2):return cosine_similarity(feature1, feature2)[0][0]@app.route('/compare', methods=['POST'])
def compare_images():file1 = request.files['image1']file2 = request.files['image2']npimg1 = np.frombuffer(file1.read(), np.uint8)npimg2 = np.frombuffer(file2.read(), np.uint8)img1 = cv2.imdecode(npimg1, cv2.IMREAD_COLOR)img2 = cv2.imdecode(npimg2, cv2.IMREAD_COLOR)# 分类和特征提取class1, feature1 = classify_image(img1)class2, feature2 = classify_image(img2)if class1 != class2:similarity = 0.0risk_level = "低"intervention = "否"else:similarity = calculate_similarity(feature1, feature2)risk_level = "高" if similarity > 0.8 else "中" if similarity > 0.5 else "低"intervention = "是" if similarity > 0.8 else "否"return jsonify({'similarity': f'{similarity * 100:.2f}%','risk_level': risk_level,'intervention': intervention,'class1': class1,'class2': class2})if __name__ == '__main__':app.run(debug=True)

在确保代码在本地运行正常。

3、本地运行Flask服务器

在本地Anaconda中启动opencv环境的终端,运行以下命令启动Flask服务器:

python app.py

在这里插入图片描述
服务器启动后,将会监听在本地的5000端口。

① 页面前端代码实现

创建一个HTML文件(test.html),实现图片上传和结果展示功能,全部代码如下:

<!DOCTYPE html>
<html lang="zh-CN">
<head><meta charset="UTF-8"><title>图片对比</title><style>body {font-family: Arial, sans-serif;display: flex;flex-direction: column;align-items: center;margin: 0;padding: 20px;}.container {display: flex;justify-content: space-between;width: 80%;margin-bottom: 20px;}.image-box {width: 45%;border: 2px dashed #ccc;padding: 10px;text-align: center;position: relative;}.image-box img {max-width: 100%;max-height: 200px;display: none;}.image-box input {display: none;}.upload-btn {cursor: pointer;color: #007BFF;text-decoration: underline;}.loading-bar {width: 80%;height: 20px;background-color: #f3f3f3;border: 1px solid #ccc;margin-top: 10px;display: none;position: relative;}.loading-bar div {width: 0;height: 100%;background-color: #4caf50;position: absolute;animation: loading 5s linear forwards;}@keyframes loading {to {width: 100%;}}.result {display: none;margin-top: 20px;}</style>
</head>
<body><h1>图片对比</h1><div class="container"><div class="image-box" id="box1"><label for="upload1" class="upload-btn">上传图片</label><input type="file" id="upload1" accept="image/*"><img id="image1" alt="左边文本抓取图片"></div><div class="image-box" id="box2"><label for="upload2" class="upload-btn">上传图片</label><input type="file" id="upload2" accept="image/*"><img id="image2" alt="右边文本数据库图片"></div></div><button id="compare-btn">人工智能对比</button><div class="loading-bar" id="loading-bar"><div></div></div><div class="result" id="result"><p>相似百分比: <span id="similarity">0%</span></p><p>相似度: <span id="risk-level"></span></p><p>相同个体推测: <span id="intervention"></span></p><p>1种类: <span id="class1">-</span></p><p>2种类: <span id="class2">-</span></p></div><script>document.getElementById('upload1').addEventListener('change', function(event) {loadImage(event.target.files[0], 'image1', 'box1');});document.getElementById('upload2').addEventListener('change', function(event) {loadImage(event.target.files[0], 'image2', 'box2');});function loadImage(file, imgId, boxId) {const reader = new FileReader();reader.onload = function(e) {const img = document.getElementById(imgId);img.src = e.target.result;img.style.display = 'block';document.querySelector(`#${boxId} .upload-btn`).style.display = 'none';}reader.readAsDataURL(file);}document.getElementById('compare-btn').addEventListener('click', function() {const loadingBar = document.getElementById('loading-bar');const result = document.getElementById('result');const image1 = document.getElementById('upload1').files[0];const image2 = document.getElementById('upload2').files[0];if (!image1 || !image2) {alert('请上传两张图片进行对比');return;}const formData = new FormData();formData.append('image1', image1);formData.append('image2', image2);loadingBar.style.display = 'block';result.style.display = 'none';fetch('http://localhost:5000/compare', {method: 'POST',body: formData}).then(response => response.json()).then(data => {loadingBar.style.display = 'none';result.style.display = 'block';document.getElementById('similarity').innerText = data.similarity;document.getElementById('risk-level').innerText = data.risk_level;document.getElementById('intervention').innerText = data.intervention;document.getElementById('class1').innerText = data.class1;document.getElementById('class2').innerText = data.class2;}).catch(error => {loadingBar.style.display = 'none';alert('对比过程中发生错误,请重试');console.error('Error:', error);});});</script>
</body>
</html>

② 运行网页

双击运行,刚刚创建的test.html文件,效果如图:
在这里插入图片描述
上传左右图片,比较两只相同品种的狗的相似度:
在这里插入图片描述

可以看到系统识别出了两只狗的种类相同,相似比也高达75.2%,但因为没有达到我们设置的80%的阈值,所以判断非同一个体。当然,这里的80%非常牵强,实际操作中难免误差较大。由于本文算法使用的是MobileNetV2预训练模型,并没有根据实际应用场景大量训练和调参,所以如果投入应用,仍需重新训练并根据实际效果定义阈值。

确认本地运行正常,接下来就可以进行部署了。

4. 安装Waitress服务器

Waitress是一个Python WSGI服务器,适用于在生产环境中部署Flask应用。它简单易用,适合部署中小型应用。使用pip安装Waitress:

pip install waitress

在这里插入图片描述

5. 修改代码以使用Waitress

将Flask应用代码保存为 compare.py,并确保在本地测试通过。然后创建一个批处理文件 start.cmd,内容如下:

@echo off
python -m waitress --listen=*:8000 compare:app
pause

确保 compare.py 文件中的Flask应用对象名为 app,例如:

from flask import Flask, request, jsonify
from flask_cors import CORS
import numpy as np
import cv2
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from sklearn.metrics.pairwise import cosine_similarityapp = Flask(__name__)
CORS(app)# 加载预训练的MobileNetV2模型
model = MobileNetV2(weights='imagenet', include_top=True)def classify_image(img):img = cv2.resize(img, (224, 224))  # MobileNetV2的输入尺寸为224x224x = image.img_to_array(img)x = np.expand_dims(x, axis=0)x = preprocess_input(x)preds = model.predict(x)return decode_predictions(preds, top=1)[0][0][1], model.predict(x)  # 返回类别名称和特征向量def calculate_similarity(feature1, feature2):return cosine_similarity(feature1, feature2)[0][0]@app.route('/compare', methods=['POST'])
def compare_images():file1 = request.files['image1']file2 = request.files['image2']npimg1 = np.frombuffer(file1.read(), np.uint8)npimg2 = np.frombuffer(file2.read(), np.uint8)img1 = cv2.imdecode(npimg1, cv2.IMREAD_COLOR)img2 = cv2.imdecode(npimg2, cv2.IMREAD_COLOR)# 分类和特征提取class1, feature1 = classify_image(img1)class2, feature2 = classify_image(img2)if class1 != class2:similarity = 0.0risk_level = "低"intervention = "否"else:similarity = calculate_similarity(feature1, feature2)risk_level = "高" if similarity > 0.8 else "中" if similarity > 0.5 else "低"intervention = "是" if similarity > 0.8 else "否"return jsonify({'similarity': f'{similarity * 100:.2f}%','risk_level': risk_level,'intervention': intervention,'class1': class1,'class2': class2})

6. 运行启动

配置WSGI启动:

python -m waitress --listen=*:5000 compare:app

在这里插入图片描述

你可以通过访问 http://localhost:5000 来测试你的应用。

然后给5000端口配置安全组/防火墙,实现通过公网访问。


三、Flask项目部署总结

本文详细介绍了如何通过WSGI方式部署一个基于TensorFlow图像识别的Flask项目。从安装和配置Anaconda环境,到编写和测试Flask应用,再到安装和配置WSGI服务器,我们覆盖了部署过程中的每一个步骤。这些步骤帮助确保你的Flask应用能够稳定高效地运行,并且在生产环境中易于维护和扩展。

通过遵循这些步骤,你可以确保你的Flask应用在各种环境中都能够正常运行,避免了在部署过程中可能遇到的许多常见问题。同时,这种方式也为你提供了一种标准化的部署流程,使得以后部署新的Flask项目变得更加简单和高效。希望本文对你的Flask开发和部署之旅有所帮助。

这篇关于Python进阶-部署Flask项目(以TensorFlow图像识别项目WSGI方式启动为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046603

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

如何在Ubuntu 24.04上部署Zabbix 7.0对服务器进行监控

《如何在Ubuntu24.04上部署Zabbix7.0对服务器进行监控》在Ubuntu24.04上部署Zabbix7.0监控阿里云ECS服务器,需配置MariaDB数据库、开放10050/1005... 目录软硬件信息部署步骤步骤 1:安装并配置mariadb步骤 2:安装Zabbix 7.0 Server

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert