apdplat.word.WordSegmenter分词功能使用自有词库,实现过滤功能,可是实际上,导致的结果差强人意,没办法只能使用JDK的自带过滤的功能

本文主要是介绍apdplat.word.WordSegmenter分词功能使用自有词库,实现过滤功能,可是实际上,导致的结果差强人意,没办法只能使用JDK的自带过滤的功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

WOrd的分词功能,自定义的词库,可以使用自定义的,可是实际上自带的词库实在是无法删除,导致的分词的效果很差劲


import com.alibaba.fastjson.JSON;
import org.apache.commons.lang3.StringUtils;
import org.apdplat.word.WordSegmenter;
import org.apdplat.word.dictionary.DictionaryFactory;
import org.apdplat.word.segmentation.Word;
import org.apdplat.word.util.WordConfTools;import java.util.ArrayList;
import java.util.List;/********************************************* 模块名称: 主要功能是做标题分词的操作,工具类* 功能说明: * 开发人员:  * 开发时间:2020/8/29 12:21   * v1.0.0.0 2020/8/29-01    *******************************************/public class WordPartitionUtils {public static void main(String[] args) {//分词效果加载词库DictionaryFactory.getDictionary().clear();List<String> parameterList = new ArrayList<>();parameterList.add("对决");DictionaryFactory.getDictionary().addAll(parameterList);//词典WordConfTools.set("dic.path", "classpath:word/custom.txt");//词性标注数据WordConfTools.set("part.of.speech.dic.path", "classpath:word/part_of_speech.txt");//词性说明数据WordConfTools.set("part.of.speech.des.path", "classpath:word/part_of_speech_des.txt");//二元模型WordConfTools.set("bigram.path", "classpath:word/bigram.txt");//三元模型WordConfTools.set("trigram.path", "classpath:word/trigram.txt");//停用词词典WordConfTools.set("stopwords.path", "classpath:word/stopwords.txt");//用于分割词的标点符号WordConfTools.set("punctuation.path", "classpath:word/punctuation.txt");//百家姓WordConfTools.set("surname.path", "classpath:word/surname.txt");//数量词WordConfTools.set("quantifier.path", "classpath:word/quantifier.txt");//     WordConfTools.forceOverride("classpath:custom.txt");
//        WordConfTools.set("dic.path", "classpath:dic.txt,classpath:custom.txt");DictionaryFactory.reload();String title = "<刺猬索尼克>曝正片片段,音速小子上演高萌对决";List<Word> list = WordSegmenter.seg(title);String value = WordConfTools.get("dic.path");System.out.println(JSON.toJSONString(list));System.out.println("value =" + value);}/*** 针对【标题不含QYJC(企业简称) 且 标题不含负面关键词 且 标题不含重要关键词 且 dsCode为转化率低于50%的栏目】进行过滤** @param title  入参 标题* @param dsCode 资讯的编码* @return false 不满足条件,true满足条件*/public Boolean isContionWord(String title, String dsCode, List<String> parameterDsCodeList) {Boolean wordFlag = false;List<Word> list = WordSegmenter.seg(title);for (Word word : list) {if (word.getPartOfSpeech() != null && word.getPartOfSpeech().getPos().equals("i")) {if (StringUtils.isNotBlank(word.getText())) { //匹配上的关键字wordFlag = true;
//                    log.error("【Word分词标题为】:{},【匹配上关键字】:{}", title, word.getText());} else {
//                    log.error("【Word分词标题为】:{},【匹配关键字-无】", title);}break;}}if (wordFlag && parameterDsCodeList.contains(dsCode)) {return true;}return false;}

运行结果:

SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
[{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"des":"未知","pos":"i"},"synonym":[],"text":"刺"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"猬"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"des":"","pos":"nr"},"synonym":[],"text":"索尼克"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"曝"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"正"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"片"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"片段"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"音"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"速"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"小"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"子"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"上演"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"des":"","pos":"nr"},"synonym":[],"text":"高萌对"},{"acronymPinYin":"","antonym":[],"frequency":0,"fullPinYin":"","partOfSpeech":{"$ref":"$[0].partOfSpeech"},"synonym":[],"text":"决"}]
value =classpath:word/custom.txt

使用Word分词来实现文本的过滤,效果耗时是单位数;

 

使用JDK的过滤stream流式来实现文本的过滤,效果耗时是单位数;差异不大

SELECTt.keyword AS '标题',t.tag_count AS '耗时(毫秒)',t.tags AS '过滤方式',t.remark AS '返回匹配结果',t.is_add AS '结果0 false 1 true',t.xwbt AS '返回结果',t.mtcc AS '数据编码',t.update_time AS '操作时间'
FROMtbm_news_log t where  t.tags='WORD'
ORDER BYt.id DESC   limit 1000;
SELECTt.keyword AS '标题',t.tag_count AS '耗时(毫秒)',t.tags AS '过滤方式',t.remark AS '返回匹配结果',t.is_add AS '结果0 false 1 true',t.xwbt AS '返回结果',t.mtcc AS '数据编码',t.update_time AS '操作时间'
FROMtbm_news_log t where  t.tags='JDKCONTAINS'
ORDER BYt.id DESC  limit 1000;

 

综上是redis先缓存8万条数据,然后进行过滤,

测试1000条数据的标题过滤效果如截图,差异不明显。

 

 

依赖pom.xml

 

<!-- https://mvnrepository.com/artifact/com.janeluo/ikanalyzer -->
<dependency><groupId>com.janeluo</groupId><artifactId>ikanalyzer</artifactId><version>2012_u6</version><exclusions><exclusion><artifactId>lucene-queryparser</artifactId><groupId>org.apache.lucene</groupId></exclusion><exclusion><artifactId>lucene-core</artifactId><groupId>org.apache.lucene</groupId></exclusion><exclusion><groupId>org.slf4j</groupId><artifactId>slf4j-api</artifactId></exclusion></exclusions>
</dependency><dependency><groupId>org.apdplat</groupId><artifactId>word</artifactId><version>${apdplat.word.version}</version><exclusions><exclusion><artifactId>lucene-queryparser</artifactId><groupId>org.apache.lucene</groupId></exclusion><exclusion><artifactId>lucene-core</artifactId><groupId>org.apache.lucene</groupId></exclusion><exclusion><groupId>org.slf4j</groupId><artifactId>slf4j-api</artifactId></exclusion><exclusion><groupId>org.apache.lucene</groupId><artifactId>lucene-analyzers-common</artifactId></exclusion></exclusions>
</dependency>

 

这篇关于apdplat.word.WordSegmenter分词功能使用自有词库,实现过滤功能,可是实际上,导致的结果差强人意,没办法只能使用JDK的自带过滤的功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045888

相关文章

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分