docx 文档向量化详细过程

2024-06-09 15:20
文章标签 文档 详细 过程 量化 docx

本文主要是介绍docx 文档向量化详细过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

读取文件

使用的 docx 文档是一个 示例.docx 文档,内容截图如下:

image.png

参数说明

基本的文档处理参数如下:

chunk_overlap = 50
chunk_size = 250
embed_model = 'm3e-large'
vs_type = 'fassi'
zh_title_enhance = False

详细解释如下:

  1. chunk_overlap = 50: chunk_overlap 是指在进行文本分块时,每个块之间的重叠量。在处理文本时,通常将文本分成多个块以便更有效地处理,而重叠量可以确保在相邻的块之间不会丢失重要的信息。在这个例子中,重叠量为 50,表示相邻块之间会有 50 个字符的重叠。

  2. chunk_size = 250chunk_size 是指每个文本块的大小。将长文本分成适当大小的块有助于更高效地处理文本数据。在这里每个文本块的大小为 250 个字符。

  3. embed_model = 'm3e-largeembed_model 是指用于文本嵌入(embedding)的模型。文本嵌入是将文本数据转换成向量的过程,通常用于表示文本数据。在这里,使用了名为 m3e-large 的嵌入模型。

  4. vs_type = 'fassi'vs_type 是向量数据库名称。

  5. zh_title_enhance = Falsezh_title_enhance 是一个布尔值,用于指示是否要增强中文标题。当设置为 True 时,表示对中文标题进行增强处理;当设置为 False 时,表示不进行增强处理。

加载自定义的 Loader 处理 pdf 文件

这里我使用的是自定义的 document_loaders.mydocloader.RapidOCRDocLoader ,处理过程的核心代码如下:

def _get_elements(self) -> List:def doc2text(filepath):from docx.table import _Cell, Tablefrom docx.oxml.table import CT_Tblfrom docx.oxml.text.paragraph import CT_Pfrom docx.text.paragraph import Paragraphfrom docx import Document, ImagePartfrom PIL import Imagefrom io import BytesIOimport numpy as npfrom rapidocr_onnxruntime import RapidOCRocr = RapidOCR()doc = Document(filepath)resp = ""def iter_block_items(parent):from docx.document import Documentif isinstance(parent, Document):parent_elm = parent.element.bodyelif isinstance(parent, _Cell):parent_elm = parent._tcelse:raise ValueError("RapidOCRDocLoader parse fail")for child in parent_elm.iterchildren():if isinstance(child, CT_P):yield Paragraph(child, parent)elif isinstance(child, CT_Tbl):yield Table(child, parent)b_unit = tqdm.tqdm(total=len(doc.paragraphs)+len(doc.tables),desc="RapidOCRDocLoader block index: 0")for i, block in enumerate(iter_block_items(doc)):b_unit.set_description("RapidOCRDocLoader  block index: {}".format(i))b_unit.refresh()if isinstance(block, Paragraph):resp += block.text.strip() + "\n"images = block._element.xpath('.//pic:pic')  # 获取所有图片for image in images:for img_id in image.xpath('.//a:blip/@r:embed'):  # 获取图片idpart = doc.part.related_parts[img_id]  # 根据图片id获取对应的图片if isinstance(part, ImagePart):image = Image.open(BytesIO(part._blob))result, _ = ocr(np.array(image))if result:ocr_result = [line[1] for line in result]resp += "\n".join(ocr_result)elif isinstance(block, Table):for row in block.rows:for cell in row.cells:for paragraph in cell.paragraphs:resp += paragraph.text.strip() + "\n"b_unit.update(1)return resptext = doc2text(self.file_path)from unstructured.partition.text import partition_textreturn partition_text(text=text, **self.unstructured_kwargs)

这里使用了一个叫 Document 的 python 库可以直接提取 docx 文件中的信息,Document 专门用于处理 Microsoft Word 文档。我们这里主要处理的只有两种类型的内容,分别对应 paragraphstables ,处理逻辑如下:

  • paragraphs : 直接将文本提取出来拼接到 resp 后面,如果有图片,则会使用 ocr 技术提取图片中的文字同样拼接到 resp 后面
  • tables:将表格中的每一行文本,从左到右使用换行符 “\n” ,将每一列的数据拼接起来,如下图所示表格,最后拼接的字符串结果如下所示。

image.png

优点
缺点
GEOcoding & CSV export:类似于知识库问答,因为需要返回准确的经纬度
只能查询
Administrative layers&export to QGIS: 与app.ageospatial.com进行数据访问
无法对结果进行操作交互
Population data:与app.ageospatial.com进行数据访问人口数据分布
输入数据格式有限
Sentinel-2 imagery and NDVl(Normalized Difference Vegetation Index) :与app.ageospatial.com进行数据访问卫星影像
依赖于自己的数据,因为都是专业涉密数据,准确性也高
Building data&export to QGIS

最终将所有paragraphstables 中的字符串都拼接起来形成一个长字符串,最后使用一个 partition_text 函数进行了一定的切分,将得到的字符串列表返回即可,其实这一步感觉没啥用处,因为后边其实还使用了ChineseRecursiveTextSplitter 来对长文本进行了递归拆分。

封装

将得到文本进行拆分之后,以方便后续的内容向量化,将上面的结果包装成一个包含了许多 Document 列表,,这些 Document 有利于后续向量化入库,每个 Document 中有 pagecontentmetadata ,前者存放部分文本内容,后者存放该内容的元数据,比如文件位置等等,部分内容展示如下图。

image.png

存入向量库

随便找一个可以使用的向量模型,我这里使用的是 m3e-large ,另外还有找自己合适的向量数据库,我这里使用的是 fassi ,将上面处理好的内容都经过向量化存入 fassi 中,后面结合大模型即可即可进行文档的问答和检索。这里展示了使用我这个文档进行的问答过程。

image.png

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于docx 文档向量化详细过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1045557

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机