Renesas MCU之SCI_SPI接口驱动LCD

2024-06-09 10:12
文章标签 接口 驱动 sci spi lcd mcu renesas

本文主要是介绍Renesas MCU之SCI_SPI接口驱动LCD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概述

1 软硬件介绍

1.1 软件版本信息

1.2 ST7796-LCD

1.3 MCU IO与LCD PIN对应关系

2 FSP配置项目

2.1 配置项目参数

2.2 生成项目框架

3 代码实现 

3.1 SPI的库函数

3.1.1 R_SCI_SPI_Open()

3.1.2  R_SCI_SPI_Read()

3.1.3  R_SCI_SPI_Write()

3.2 应用函数接口

3.2.1 SPI初始化函数

3.2.2  读数据接口

3.2.3 写数据接口

3.2.4 回调函数

3.2.5 SPI应用程序源代码 

3.3 LCD驱动程序实现

3.3.1 驱动代码

3.3.2 测试代码实现

4 测试结果


概述

本文主要介绍使用Renesas MCU之SPI读写数据功能,包括硬件资源介绍,FSP配置项目的方法,还介绍了SCI_SPI的接口函数,笔者使用一款SPI接口类型的LCD作为Device,使用SCI_SPI接口驱动该LCD,还编写测试函数验证其功能。

1 软硬件介绍

1.1 软件版本信息

软硬件信息版本信息
Renesas MCUR7FA4M2AD3C
KeilMDK ARM 5.38
FSP 版本5.3.0
调试工具:st-linkST-LINK/V2-1

 注意:

在Keil MDK中可以更改FSP的版本,方法如下

1.2 ST7796-LCD

LCD的PIN引脚功能介绍

序号模块引脚引脚说明
1VCC屏电源正
2GND屏电源地
3LCD_CS液晶屏片选控制信号,低电平有效
4LCD_RST液晶屏复位控制信号,低电平复位
5LCD_RS液晶屏命令/数据选择控制信号

高电平:数据,低电平:命令

6SDI(MOSI)SPI总线写数据信号(SD卡和液晶屏共用)
7SCKSPI总线时钟信号(SD卡和液晶屏共用)
8LED液晶屏背光控制信号(如需要控制,请接引脚,如不需要控制,可以不接)
9SDO(MISO)SPI总线读数据信号(SD卡和液晶屏共用)
10CTP_SCL电容触摸屏IIC总线时钟信号(无触摸屏的模块不需连接)
11CTP_RST电容触摸屏复位控制信号,低电平复位(无触摸屏的模块不需连接)
12CTP_SDA电容触摸屏IIC总线数据信号(无触摸屏的模块不需连接)
13CTP_INT电容触摸屏IIC总线触摸中断信号,产生触摸时,输入低电平到主控(无触摸屏的模块不需连接)
14SD_CSSD卡片选控制信号,低电平有效(不使用SD卡功能,可不接)

实体LCD Port对应关系如下图所示

1.3 MCU IO与LCD PIN对应关系

RA4M2 PIN引脚LCD PIN引脚
BSP_IO_PORT_01_PIN_01MOSI
BSP_IO_PORT_01_PIN_00MISO
BSP_IO_PORT_01_PIN_02SCK
BSP_IO_PORT_01_PIN_05CS
BSP_IO_PORT_01_PIN_06RST
BSP_IO_PORT_01_PIN_03RS

2 FSP配置项目

2.1 配置项目参数

1)配置系统工作时钟,笔者的开发板使用的外部晶振为12M Hz

2) 在Pins面板上使能SCI0配置,选择IO口如下

 3)在stack面板上创建SPI模块

 4)配置SPI的相关参数

2.2 生成项目框架

 完成参数配置之后,就可以生成项目框架,点击Generate project就可以生成项目代码,使用Keil打开项目,其结构如下:

3 代码实现 

3.1 SPI的库函数

3.1.1 R_SCI_SPI_Open()

函数原型:


fsp_err_t R_SCI_SPI_Open( spi_ctrl_t * 	p_api_ctrl,spi_cfg_t const *const 	p_cfg )	

函数功能: 初始化SPI通信模式

该函数的主要任务如下:

1)执行参数检查和处理错误条件。
2)开启SCI通道时钟。
3)使用默认值和用户可配置选项初始化相关的寄存器。
4)提供与其他API函数一起使用的通道句柄。

参数介绍:

p_api_ctrlPointer to the control structure.
p_cfg

Pointer to a configuration structure.

返回值:
FSP_SUCCESSChannel initialized successfully.
FSP_ERR_ASSERTIONAn input parameter is invalid or NULL.
FSP_ERR_ALREADY_OPENThe instance has already been opened.
FSP_ERR_IP_CHANNEL_NOT_PRESENTThe channel number is invalid.

3.1.2  R_SCI_SPI_Read()

函数原型:

fsp_err_t R_SCI_SPI_Read	(	spi_ctrl_t *const 	p_api_ctrl,void * 	p_dest,uint32_t const 	length,spi_bit_width_t const 	bit_width )	

函数功能:从SPI设备接收数据。

该函数的主要任务如下:

1)执行参数检查和处理错误条件。
2)使发射机。
3)使接收机。
4)启用中断。
5)通过向TXD寄存器写入数据来启动数据传输。
6)从接收缓冲区接收数据发生完全中断,并将数据复制到目标缓冲区。
7)通过接收缓冲区完全中断和发送虚拟数据完成数据接收。
8)禁用发射机。
9)禁用接收机。
10)禁用中断。

参数介绍:

p_api_ctrlPointer to the control structure.
p_destPointer to the destination buffer.
lengthThe number of bytes to transfer.
bit_widthInvalid for SCI_SPI (Set to SPI_BIT_WIDTH_8_BITS).
返回值介绍: 
FSP_SUCCESSRead operation successfully completed.
FSP_ERR_ASSERTIONOne of the following invalid parameters passed:
  • Pointer p_api_ctrl is NULL
  • Bit width is not 8 bits
  • Length is equal to 0
  • Pointer to destination is NULL
FSP_ERR_NOT_OPENThe channel has not been opened. Open the channel first.
FSP_ERR_UNSUPPORTEDThe given bit_width is not supported.
FSP_ERR_IN_USEA transfer is already in progress.

3.1.3  R_SCI_SPI_Write()

函数原型:


fsp_err_t R_SCI_SPI_Write	(	spi_ctrl_t *const 	p_api_ctrl,void const * 	p_src,uint32_t const 	length,spi_bit_width_t const 	bit_width )	

函数功能:将数据传输到SPI设备

该函数的主要任务如下:

1)执行参数检查和处理错误条件。
2)使发射机。
3)启用中断。
4)开始数据传输与数据通过传输缓冲区空中断。
5)从源缓冲区复制数据到SPI数据寄存器进行传输。
6)通过传输缓冲区空中断完成数据传输。
7)禁用发射机。
8)禁用接收机。
9)禁用中断。

参数介绍

p_api_ctrlPointer to the control structure.
p_srcPointer to the source buffer.
lengthThe number of bytes to transfer.
bit_widthInvalid for SCI_SPI (Set to SPI_BIT_WIDTH_8_BITS).
返回值
FSP_SUCCESSWrite operation successfully completed.
FSP_ERR_ASSERTIONOne of the following invalid parameters passed:
  • Pointer p_api_ctrl is NULL
  • Pointer to source is NULL
  • Length is equal to 0
  • Bit width is not equal to 8 bits
FSP_ERR_NOT_OPENThe channel has not been opened. Open the channel first.
FSP_ERR_UNSUPPORTEDThe given bit_width is not supported.
FSP_ERR_IN_USEA transfer is already in progress.

3.2 应用函数接口

3.2.1 SPI初始化函数

代码第25行:调用R_SCI_SPI_Open函数初始化SPI接口

3.2.2  读数据接口

代码第48行:调用R_SCI_SPI_Read接口读取数据

代码第50行:等待数据读取完成

3.2.3 写数据接口

代码第37行:调用R_SCI_SPI_Write接口写数据

代码第39行:等待写数据完成

3.2.4 回调函数

代码第14行:检测传输数据事件

代码第15行:数据传输完成,传输数据控制字置位

3.2.5 SPI应用程序源代码 

 /*FILE NAME  :  bsp_spi.cDescription:  generate pwm by timerAuthor     :  tangmingfei2013@126.comDate       :  2024/06/03*/#include "bsp_spi.h" 
#include "hal_data.h"static volatile bool g_transfer_complete = false;
void g_spi0_callback (spi_callback_args_t * p_args)
{if (SPI_EVENT_TRANSFER_COMPLETE == p_args->event){g_transfer_complete = true;}
}void sci_spi_basic_init (void)
{fsp_err_t err = FSP_SUCCESS;/* Initialize the SPI module. */err = R_SCI_SPI_Open(&g_spi0_ctrl, &g_spi0_cfg);/* Handle any errors. This function should be defined by the user. */assert(FSP_SUCCESS == err);
}void hal_spi_writebyte( uint8_t byte )
{fsp_err_t err = FSP_SUCCESS;uint8_t buff[1];g_transfer_complete = false;buff[0] = byte;err = R_SCI_SPI_Write(&g_spi0_ctrl, buff, 1, SPI_BIT_WIDTH_8_BITS);assert(FSP_SUCCESS == err);while (false == g_transfer_complete);
}uint8_t hal_spi_readbyte(void)
{fsp_err_t err = FSP_SUCCESS;uint8_t buff[1];g_transfer_complete = false;err =  R_SCI_SPI_Read( &g_spi0_ctrl, buff, 1, SPI_BIT_WIDTH_8_BITS);assert(FSP_SUCCESS == err);while (false == g_transfer_complete);return  buff[0];
}/* End of this file */

3.3 LCD驱动程序实现

3.3.1 驱动代码

LCD的驱动代码在改文章中已经实现:

使用SPI驱动串行LCD的驱动实现(STM32F4)_spi+lcd-CSDN博客

这里只需修改SPI相关的接口即可,和LCD相关的代码不需要修改,直接引用。

修改和MCU相关的底代码:

1)SPI接口代码。这里需要编写读写数据函数,其函数原型如下:

 源代码:

void SPI_WriteByte(uint8_t byte)
{hal_spi_writebyte(byte);
} uint8_t SPI_ReadByte(void)
{return hal_spi_readbyte();
} 

2)其他IO库配置

源代码:

#include <stdlib.h>
#include <stdio.h>
#include "bsp_spi.h" 
#include "hal_data.h"#define LCD_CS_CLR      R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_01_PIN_05, BSP_IO_LEVEL_LOW)
#define LCD_CS_SET      R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_01_PIN_05, BSP_IO_LEVEL_HIGH)#define LCD_RST_CLR     R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_01_PIN_06, BSP_IO_LEVEL_LOW)
#define LCD_RST_SET     R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_01_PIN_06, BSP_IO_LEVEL_HIGH)#define LCD_RS_CLR      R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_01_PIN_03, BSP_IO_LEVEL_LOW)
#define LCD_RS_SET      R_IOPORT_PinWrite(&g_ioport_ctrl, BSP_IO_PORT_01_PIN_03, BSP_IO_LEVEL_HIGH)

3.3.2 测试代码实现

代码第341行:初始化SPI接口

代码第343行:初始化LCD

 源代码:

void disp_init(void)
{sci_spi_basic_init();/*You code here*/LCD_Init();LCD_direction(0);LCD_Clear(GREEN);
}

编写一个改变屏幕颜色变化的测试函数

void lcd_test( void )
{uint16_t color_list[6]= {BRRED, BLUE, MAGENTA, RED, YELLOW, GREEN};static int index = 0;LCD_Clear( color_list[index] );index++;R_BSP_SoftwareDelay( 1, BSP_DELAY_UNITS_SECONDS);if( index > 6 )index = 0;
}

4 测试结果

1)改变屏幕的颜色:粉色

2)改变屏幕的颜色:蓝色

这篇关于Renesas MCU之SCI_SPI接口驱动LCD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044883

相关文章

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

java线程深度解析(一)——java new 接口?匿名内部类给你答案

http://blog.csdn.net/daybreak1209/article/details/51305477 一、内部类 1、内部类初识 一般,一个类里主要包含类的方法和属性,但在Java中还提出在类中继续定义类(内部类)的概念。 内部类的定义:类的内部定义类 先来看一个实例 [html]  view plain copy pu

模拟实现vector中的常见接口

insert void insert(iterator pos, const T& x){if (_finish == _endofstorage){int n = pos - _start;size_t newcapacity = capacity() == 0 ? 2 : capacity() * 2;reserve(newcapacity);pos = _start + n;//防止迭代

京东物流查询|开发者调用API接口实现

快递聚合查询的优势 1、高效整合多种快递信息。2、实时动态更新。3、自动化管理流程。 聚合国内外1500家快递公司的物流信息查询服务,使用API接口查询京东物流的便捷步骤,首先选择专业的数据平台的快递API接口:物流快递查询API接口-单号查询API - 探数数据 以下示例是参考的示例代码: import requestsurl = "http://api.tanshuapi.com/a

股票数据接口-陈科肇

陈科肇 新浪财经 sz-深圳sh-上海历史分价表:http://market.finance.sina.com.cn/pricehis.php?symbol=sz000506&startdate=2016-12-27&enddate=2016-12-27历史成交明细(当日成交明细):http://vip.stock.finance.sina.com.cn/quotes_service/v

驱动(RK3588S)第七课时:单节点设备树

目录 需求一、设备树的概念1、设备树的后缀名:2、设备树的语法格式3、设备树的属性(重要)4、设备树格式举例 二、设备树所用函数1、如何在内核层种获取设备树节点:2、从设备树上获取 gpio 口的属性3、获取节点上的属性只针对于字符串属性的4、函数读取 np 结点中的 propname 属性的值,并将读取到的 u32 类型的值保存在 out_value 指向的内存中,函数的返回值表示读取到的

驱动安装注册表指令

HKCR: HKEY_CLASSES_ROOT HKCU: HKEY_CURRENT_USER HKLM: HKEY_LOCAL_MACHINE HKU: HEKY_USER HER: 相对根键

UMDF驱动安装

VS2013 + WDF8.1,UMDF驱动选择User Mode Driver,不要选User Mode Driver 2.0,否则Win7安装有问题,如图 另外,在驱动安装时不要忘记WUDFUpdate_<主版本号><次版本号>.dll文件,具体文件名在INF中查找。此文件可在WDF的安装目录中找到。注意:在WDF的安装目录中会有3个WUDFUpdate_xxx.dll文件,x86,x6