学过的模拟实现(不定期更新)

2024-06-09 05:52

本文主要是介绍学过的模拟实现(不定期更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

string模拟

list模拟

#pragma once#include<assert.h>
namespace bear
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;//构造函数1vector():_start(nullptr),_finish(nullptr),_end_of_storage(nullptr){}vector(size_t n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);for (size_t i = 0; i < n; ++i){push_back(val);}}vector(int n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);for (int i = 0; i < n; ++i){push_back(val);}}template<class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}//拷贝构造传统写法vector(const vector<T>& v){_start = new T[v.capacity()];for(size_t i = 0; i < v.size(); ++i){_start[i] = v._start[i];}_finish = _start + v.size();_end_of_storage = _start + v.capacity();}//拷贝构造现代写法vector(const vector<T>& v){vector<T> tmp(v.begin(), v.end());swap(tmp);}//析构函数~vector(){delete[] _start;_start = _finish = _end_of_storage = nullptr;}//迭代器iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}//扩容函数void reserve(size_t n){if (n > capacity()){size_t sz = size();T* tmp = new T[n];if (_start){for (size_t i = 0; i < sz; i++) {tmp[i] = _start[i];}delete[] _start;}_start = tmp;_finish = tmp + sz;_end_of_storage = tmp + n;}}//尾插void push_back(const T& x)      {if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;++_finish;}//检查容量size_t capacity() const{return _end_of_storage - _start;}//检查有效大小size_t size() const{return _finish - _start;}//重构造[]T& operator[](size_t pos){return _start[pos];}const T& operator[](size_t pos) const{return _start[pos];}//删除一个元素void pop_back(){assert(!empty());--_finish;}// v1 = v2vector<T>& operator=(vector<T> v){swap(v);return *this;}void swap(vector<T>& v){//交换容器当中的各个成员变量std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}//判空bool empty(){return _start == _finish;}//开空间+初始化void resize(size_t n,T val = T()){if (n < size()){_finish = _start+n;}else {if (n > capacity()){reserve(n);}while (_finish != _start + n){*_finish = val;++_finish;}}}void insert(iterator pos, const T& val){if (_finish == _end_of_storage){size_t len = pos - _start;reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + len;}iterator end = _finish -1;while (end >= pos){*(end + 1) = *end;--end;}*pos = val;++_finish;}void erase(iterator pos){iterator start = pos + 1;while (start != _finish){*(start - 1) = *start;++start;}--_finish;}private:iterator _start = nullptr;iterator _finish = nullptr;iterator _end_of_storage = nullptr;};}

vector模拟 

#pragma once#include<assert.h>
namespace bear
{template<class T>class vector{public:typedef T* iterator;typedef const T* const_iterator;//构造函数1vector():_start(nullptr),_finish(nullptr),_end_of_storage(nullptr){}//拷贝构造1vector(size_t n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);for (size_t i = 0; i < n; ++i){push_back(val);}}//拷贝构造2vector(int n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);for (int i = 0; i < n; ++i){push_back(val);}}template<class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}//拷贝构造传统写法vector(const vector<T>& v){_start = new T[v.capacity()];for(size_t i = 0; i < v.size(); ++i){_start[i] = v._start[i];}_finish = _start + v.size();_end_of_storage = _start + v.capacity();}//拷贝构造现代写法vector(const vector<T>& v){vector<T> tmp(v.begin(), v.end());swap(tmp);}//析构函数~vector(){delete[] _start;_start = _finish = _end_of_storage = nullptr;}//迭代器iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}//扩容函数void reserve(size_t n){if (n > capacity()){size_t sz = size();T* tmp = new T[n];if (_start){for (size_t i = 0; i < sz; i++) {tmp[i] = _start[i];}delete[] _start;}_start = tmp;_finish = tmp + sz;_end_of_storage = tmp + n;}}//尾插void push_back(const T& x)      {if (_finish == _end_of_storage){reserve(capacity() == 0 ? 4 : capacity() * 2);}*_finish = x;++_finish;}//检查容量size_t capacity() const{return _end_of_storage - _start;}//检查有效大小size_t size() const{return _finish - _start;}//重构造[]T& operator[](size_t pos){return _start[pos];}const T& operator[](size_t pos) const{return _start[pos];}//删除一个元素void pop_back(){assert(!empty());--_finish;}// v1 = v2vector<T>& operator=(vector<T> v){swap(v);return *this;}void swap(vector<T>& v){//交换容器当中的各个成员变量std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}//判空bool empty(){return _start == _finish;}//开空间+初始化void resize(size_t n,T val = T()){if (n < size()){_finish = _start+n;}else {if (n > capacity()){reserve(n);}while (_finish != _start + n){*_finish = val;++_finish;}}}void insert(iterator pos, const T& val){if (_finish == _end_of_storage){size_t len = pos - _start;reserve(capacity() == 0 ? 4 : capacity() * 2);pos = _start + len;}iterator end = _finish -1;while (end >= pos){*(end + 1) = *end;--end;}*pos = val;++_finish;}void erase(iterator pos){iterator start = pos + 1;while (start != _finish){*(start - 1) = *start;++start;}--_finish;}private:iterator _start = nullptr;iterator _finish = nullptr;iterator _end_of_storage = nullptr;};
}

AVLTree平衡二叉树

#pragma once
#include<assert.h>
template<class K,class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left; //左子树指针AVLTreeNode<K, V>* _right;//右子树指针AVLTreeNode<K, V>* _parent;//每个结点都包含了一个父结点地址pair<K, V> _kv;//键值对int _bf;//平衡因子AVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};template<class K,class T>
class AVLTree
{typedef AVLTreeNode<K, T> Node;
public://中序遍历副函数void Inorder(){_Inorder(_root);}//中序遍历主函数void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << " ";_Inorder(root->_right);}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* pp = parent->_parent;parent->_parent = subR;if (subRL){subRL->_parent = parent;}if (_root = parent){_root = subR;subR->_parent = nullptr;}else{if (pp->_left = parent){pp->_left = subR;}else{pp->_right = subR;}subR->_parent = pp;}parent->_bf = subR->_bf = 0;}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subRR = subL->_right;parent->_left = subRR;subL->_right = parent;Node* pp = parent->_parent;parent->_parent = subL;if (subRR != nullptr){subRR->_parent = parent;}if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (pp->_left == parent){pp->_left = subL;}else{pp->_right = parent;}subL->_parent = pp;}subL->_bf = parent->_bf = 0;}void RotateRL(Node* parent)//右左双旋{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent->_left);if (bf == 0){//subRL自己就是新增parent->_bf = subR->_bf = subRL->_bf = 0;}else if (bf == -1){//subRL的左子树新增parent->_bf = 0;subRL->_bf = 0;subR->_bf = 1;}else if (bf == 1){//subRL的右子树新增parent->_bf = -1;subRL->_bf = 0;subR->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent)//左右双旋{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent->_right);if (bf == 0){//subLR自己就是新增subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else if (bf == -1){//subLR的左子树新增subLR->_bf = 0;subL->_bf = 0;parent->_bf = 1;}else if(bf == 1){//subLR的右子树新增subLR->_bf = 0;subL->_bf = -1;parent->_bf = 0;}else{assert(false);}}//插入函数bool insert(const pair<K,T>& kv){//按照二叉树搜索树插入if (_root == nullptr)//根结点为空时new一个最初的根结点{_root = new Node(kv);return true;}Node* parent = nullptr;//这个为当前指针cur的父结点指针Node* cur = _root;//当前指针指向根while (cur)//当不为空,说明存在值,那么继续搜索可插入的地方{if (cur->_kv.first < kv.first)//key大于结点值,往右走{parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first)//key小于结点值,往左走{parent = cur;cur = cur->_left;}else//相等,那么不插入,插入失败{return false;}}//找到地方插入,new一个新结点cur = new Node(kv);if (parent->_kv.first < kv.first)//key大于父结点值,插右边{parent->_right = cur;cur->_parent = parent;}else//小于那么插左边{parent->_left = cur;cur->_parent = parent;}return true;//插入成功//平衡因子while (cur != _root){//处理因子if (cur == parent->_left)//如果插入的结点在父节点的左边{parent->_bf--;//因子-1}else//如果插入的结点在父节点的右边{parent->_bf++;//因子+1}//处理完成,开始检查因子if (parent->_bf == 0)//等于0,说明平衡,不需要处理{break;}else if (parent->_bf == 1 || parent->_bf == -1)//等于1或-1,说明高度变化了,那么要处理祖先结点因子{cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2)// 如果等于2或-2,需要旋转解决{if (parent->_bf == 2 && cur->_bf == 1)//说明右边高,需左旋{RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1)//说明左边高,需右旋{RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1)//左子树的右子树高{RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1)//右子树的左子树高{RotateLR(parent);}break;}else{assert(false);}}}//判断是否为AVL树bool IsAVLTree(){int hight = 0; //输出型参数return _IsBalanced(_root, hight);}//检测二叉树是否平衡bool _IsBalanced(Node* root, int& hight){if (root == nullptr) //空树是平衡二叉树{hight = 0; //空树的高度为0return true;}//先判断左子树int leftHight = 0;if (_IsBalanced(root->_left, leftHight) == false)return false;//再判断右子树int rightHight = 0;if (_IsBalanced(root->_right, rightHight) == false)return false;//检查该结点的平衡因子if (rightHight - leftHight != root->_bf){cout << "平衡因子设置异常:" << root->_kv.first << endl;}//把左右子树的高度中的较大值+1作为当前树的高度返回给上一层hight = max(leftHight, rightHight) + 1;return abs(rightHight - leftHight) < 2; //平衡二叉树的条件}private:Node* _root = nullptr;
};

 红黑树RBTree

#pragma once
#include<iostream>
using namespace std;
//枚举类型的颜色分类
enum Colour
{RED,BLACK
};//定义一个结构体结点
template<class K,class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};//红黑树类
template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public://中序遍历副函数void Inorder(){_Inorder(_root);}//中序遍历主函数void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << " ";_Inorder(root->_right);}//插入函数bool insert(const pair<K, V>& kv){//按照二叉树搜索树插入if (_root == nullptr)//根结点为空时new一个最初的根结点{_root = new Node(kv);_root->_col = BLACK;//根结点一定为黑return true;}Node* parent = nullptr;//这个为当前指针cur的父结点指针Node* cur = _root;//当前指针指向根while (cur)//当不为空,说明存在值,那么继续搜索可插入的地方{if (cur->_kv.first < kv.first)//key大于结点值,往右走{parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first)//key小于结点值,往左走{parent = cur;cur = cur->_left;}else//相等,那么不插入,插入失败{return false;}}cur = new Node(kv);//新增结点cur->_col = RED;//默认红色//插入if (parent->_kv.first > kv.first){parent->_left = cur;cur->_parent = parent;}else{parent->_right = cur;cur->_parent = parent;}//开始判断颜色while (parent != nullptr && parent->_col == RED){Node* grandfather = parent->_parent;//如果父亲为红,那么违反红红规则,开始判断情况if (parent != nullptr && parent == grandfather->_left){Node* uncle = grandfather->_right;//记录叔叔结点if (uncle != nullptr && uncle->_col == RED)//如果叔叔存在或者为红色,情况一{//变色parent->_col = uncle->_col = BLACK;//父亲和叔叔都变黑grandfather->_col = RED;//爷爷变红//将cur和parent往上移继续判断cur = grandfather;parent = cur->_parent;}else//叔叔不存在或者存在且为黑色,情况二和情况三结合{if (cur == parent->_left){RotateR(grandfather);//右旋parent->_col = BLACK;grandfather->_col = RED;}else{RotateLR(grandfather); //左右双旋grandfather->_col = RED;cur->_col = BLACK;}break;//根结点为黑,不需要往上了}}else//parent在grandfather的右边{Node* uncle = grandfather->_left;//记录叔叔结点if (uncle != nullptr && uncle->_col == RED)//如果叔叔存在或者为红色,情况一{parent->_col = uncle->_col = BLACK;//父亲和叔叔都变黑grandfather->_col = RED;//爷爷变红//向上调整cur = grandfather;parent = grandfather->_parent;}else//叔叔不存在或者存在且为黑色,情况二和情况三结合{if (cur == parent->_left)//如果插入在parent的左边{RotateRL(grandfather);//右左双旋cur->_col = BLACK;grandfather->_col = RED;}else//如果插入在parent的右边{RotateL(grandfather);//左旋grandfather->_col = RED;parent->_col = BLACK;}break;//根结点为黑,不需要往上了}}}_root->_col = BLACK;//往上移动后无论cur是否为根结点,统一为改黑return true;//插入成功}//左单旋void RotateL(Node* parent){//定义新指针,方便操作Node* subR = parent->_right;Node* subRL = subR->_left;Node* pp = parent->_parent;//方便更改_root的操作parent->_right = subRL;//让parent结点链接subRLsubR->_left = parent;//让subR的左子树链接parentparent->_parent = subR;//由于parent的_parent由nullptr变成了subR,所以也需要重新链接if (subRL)//判断subRL是否为空,如果为空的话就不需要对subRL进行操作了,不然会出现对空指针进行解引用的问题{subRL->_parent = parent;//不为空,那么让subRL链接parent}if (pp == nullptr)//如果parent是整棵树的根结点{_root = subR;//subR变为根结点subR->_parent = nullptr;//subR的_parent为空}else//如果parent不是整棵树的根结点,那么将新的parent重新链接上一个结点{if (pp->_left = parent)//如果parent是上一个结点的左子树,那么新的parent也是{pp->_left = subR;}else//如果parent是上一个结点的右子树,那么新的parent也是{pp->_right = subR;}subR->_parent = pp;//更新subR的父结点}//parent->_bf = subR->_bf = 0;//由于旋转后,整棵树的高度变回插入前的,那么此时parent和subR(cur)的因子都变回0}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subRR = subL->_right;Node* pp = parent->_parent;//建立subL和parent之间的关系parent->_left = subRR;subL->_right = parent;//建立parent和subRR之间的关系parent->_parent = subL;if (subRR != nullptr){subRR->_parent = parent;}//建立PP和subL之间的关系if (pp == nullptr){_root = subL;subL->_parent = nullptr;}else{if (pp->_left == parent){pp->_left = subL;}else{pp->_right = parent;}subL->_parent = pp;}//更新平衡因子//subL->_bf = parent->_bf = 0;}//左右双旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;//int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);//if (bf == 0)//{//    //subLR自己就是新增//    subLR->_bf = 0;//    subL->_bf = 0;//    parent->_bf = 0;//}//else if (bf == -1)//{//    //subLR的左子树新增//    subLR->_bf = 0;//    subL->_bf = 0;//    parent->_bf = 1;//}//else if (bf == 1)//{//    //subLR的右子树新增//    subLR->_bf = 0;//    subL->_bf = -1;//    parent->_bf = 0;//}//else//{//    assert(false);//}}//右左双旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);//if (bf == 0)//{//    //subRL自己就是新增//    parent->_bf = subR->_bf = subRL->_bf = 0;//}//else if (bf == -1)//{//    //subRL的左子树新增//    parent->_bf = 0;//    subRL->_bf = 0;//    subR->_bf = 1;//}//else if (bf == 1)//{//    //subRL的右子树新增//    parent->_bf = -1;//    subRL->_bf = 0;//    subR->_bf = 0;//}//else//{//    assert(false);//}}// blacknum是根结点到当前结点的黑色结点数量bool check(Node* root,int blacknum,int count){if (root == nullptr){if(count != blacknum){cout << "黑色结点数量不等" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "有连续的红色结点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return check(root->_left,blacknum,count) && check(root->_right,blacknum,count);}bool isbalance(){if (_root == nullptr){return true;}if (_root->_col == RED){return false;}//找最左路径作为黑色结点数目的参考值Node* cur = _root;int count = 0;while (cur){if (cur->_col == BLACK)++count;cur = cur->_left;}int blacknum = 0;return check(_root,blacknum,count); }
private:Node* _root = nullptr;
};

红黑树封装map、set

红黑树代码

#pragma once
#include<iostream>
using namespace std;
//枚举类型的颜色分类
enum Colour
{RED,BLACK
};//定义一个结构体结点
template<class T>
struct RBTreeNode
{RBTreeNode<T>* _left;RBTreeNode<T>* _right;RBTreeNode<T>* _parent;T _data;Colour _col;RBTreeNode(const T& data):_left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _col(RED){}
};//迭代器类
template<class T, class Ref,class Ptr>
struct _TreeIterator
{typedef RBTreeNode<T> Node;typedef _TreeIterator<T, Ref, Ptr> Self;Node* _node;_TreeIterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}Self operator++(){if (_node->_right){Node* cur = _node->_right;while (cur->_left){cur = cur->_left;}_node = cur;}else{Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_right){cur = parent;parent = parent->_parent;}_node = parent;}return *this;}Self operator--(){if (_node->_left) //结点的左子树不为空{//寻找该结点左子树当中的最右结点Node* right = _node->_left;while (right->_right){right = right->_right;}_node = right; //--后变为该结点}else //结点的左子树为空{//寻找孩子不在父亲左的祖先Node* cur = _node;Node* parent = cur->_parent;while (parent && cur == parent->_left){cur = parent;parent = parent->_parent;}_node = parent; //--后变为该结点}return *this;}bool operator!=(const Self& s) const{return _node != s._node; //判断两个正向迭代器所封装的结点是否是同一个}
};//红黑树类
template<class K, class T, class KeyofT>
class RBTree
{typedef RBTreeNode<T> Node;
public://中序遍历副函数void Inorder(){_Inorder(_root);}//中序遍历主函数void _Inorder(Node* root){if (root == nullptr)return;_Inorder(root->_left);cout << root->_kv.first << " ";_Inorder(root->_right);}//迭代器函数typedef _TreeIterator<T,T&,T*> iterator;typedef _TreeIterator<T, const T&, const T*> const_iterator;iterator begin(){Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return iterator(cur);}iterator end(){return iterator(nullptr);}const_iterator begin() const{Node* cur = _root;while (cur && cur->_left){cur = cur->_left;}return iterator(cur);}const_iterator end() const{return iterator(nullptr);}//插入函数pair<iterator,bool> insert(const T& data){//按照二叉树搜索树插入if (_root == nullptr)//根结点为空时new一个最初的根结点{_root = new Node(data);_root->_col = BLACK;//根结点一定为黑return make_pair(iterator(_root),true);}Node* parent = nullptr;//这个为当前指针cur的父结点指针Node* cur = _root;//当前指针指向根KeyofT kot;while (cur)//当不为空,说明存在值,那么继续搜索可插入的地方{if (kot(cur->_data) < kot(data))//key大于结点值,往右走{parent = cur;cur = cur->_right;}else if (kot(cur->_data) > kot(data))//key小于结点值,往左走{parent = cur;cur = cur->_left;}else//相等,那么不插入,插入失败{return make_pair(iterator(cur), false);}}cur = new Node(data);//新增结点Node* newnode = cur;cur->_col = RED;//默认红色//插入if (kot(parent->_data) > kot(data)){parent->_left = cur;cur->_parent = parent;}else{parent->_right = cur;cur->_parent = parent;}//开始判断颜色while (parent != nullptr && parent->_col == RED){Node* grandfather = parent->_parent;//如果父亲为红,那么违反红红规则,开始判断情况if (parent != nullptr && parent == grandfather->_left){Node* uncle = grandfather->_right;//记录叔叔结点if (uncle != nullptr && uncle->_col == RED)//如果叔叔存在或者为红色,情况一{//变色parent->_col = uncle->_col = BLACK;//父亲和叔叔都变黑grandfather->_col = RED;//爷爷变红//将cur和parent往上移继续判断cur = grandfather;parent = cur->_parent;}else//叔叔不存在或者存在且为黑色,情况二和情况三结合{if (cur == parent->_left){RotateR(grandfather);//右旋parent->_col = BLACK;grandfather->_col = RED;}else{RotateLR(grandfather); //左右双旋grandfather->_col = RED;cur->_col = BLACK;}break;//根结点为黑,不需要往上了}}else//parent在grandfather的右边{Node* uncle = grandfather->_left;//记录叔叔结点if (uncle != nullptr && uncle->_col == RED)//如果叔叔存在或者为红色,情况一{parent->_col = uncle->_col = BLACK;//父亲和叔叔都变黑grandfather->_col = RED;//爷爷变红//向上调整cur = grandfather;parent = grandfather->_parent;}else//叔叔不存在或者存在且为黑色,情况二和情况三结合{if (cur == parent->_left)//如果插入在parent的左边{RotateRL(grandfather);//右左双旋cur->_col = BLACK;grandfather->_col = RED;}else//如果插入在parent的右边{RotateL(grandfather);//左旋grandfather->_col = RED;parent->_col = BLACK;}break;//根结点为黑,不需要往上了}}}_root->_col = BLACK;//往上移动后无论cur是否为根结点,统一为改黑return make_pair(iterator(newnode), true);//插入成功}//左单旋void RotateL(Node* parent){//定义新指针,方便操作Node* subR = parent->_right;Node* subRL = subR->_left;Node* pp = parent->_parent;//方便更改_root的操作parent->_right = subRL;//让parent结点链接subRLsubR->_left = parent;//让subR的左子树链接parentparent->_parent = subR;//由于parent的_parent由nullptr变成了subR,所以也需要重新链接if (subRL)//判断subRL是否为空,如果为空的话就不需要对subRL进行操作了,不然会出现对空指针进行解引用的问题{subRL->_parent = parent;//不为空,那么让subRL链接parent}if (pp == nullptr)//如果parent是整棵树的根结点{_root = subR;//subR变为根结点subR->_parent = nullptr;//subR的_parent为空}else//如果parent不是整棵树的根结点,那么将新的parent重新链接上一个结点{if (pp->_left = parent)//如果parent是上一个结点的左子树,那么新的parent也是{pp->_left = subR;}else//如果parent是上一个结点的右子树,那么新的parent也是{pp->_right = subR;}subR->_parent = pp;//更新subR的父结点}//parent->_bf = subR->_bf = 0;//由于旋转后,整棵树的高度变回插入前的,那么此时parent和subR(cur)的因子都变回0}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subRR = subL->_right;Node* pp = parent->_parent;//建立subL和parent之间的关系parent->_left = subRR;subL->_right = parent;//建立parent和subRR之间的关系parent->_parent = subL;if (subRR != nullptr){subRR->_parent = parent;}//建立PP和subL之间的关系if (pp == nullptr){_root = subL;subL->_parent = nullptr;}else{if (pp->_left == parent){pp->_left = subL;}else{pp->_right = parent;}subL->_parent = pp;}//更新平衡因子//subL->_bf = parent->_bf = 0;}//左右双旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;//int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);//if (bf == 0)//{//    //subLR自己就是新增//    subLR->_bf = 0;//    subL->_bf = 0;//    parent->_bf = 0;//}//else if (bf == -1)//{//    //subLR的左子树新增//    subLR->_bf = 0;//    subL->_bf = 0;//    parent->_bf = 1;//}//else if (bf == 1)//{//    //subLR的右子树新增//    subLR->_bf = 0;//    subL->_bf = -1;//    parent->_bf = 0;//}//else//{//    assert(false);//}}//右左双旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);//if (bf == 0)//{//    //subRL自己就是新增//    parent->_bf = subR->_bf = subRL->_bf = 0;//}//else if (bf == -1)//{//    //subRL的左子树新增//    parent->_bf = 0;//    subRL->_bf = 0;//    subR->_bf = 1;//}//else if (bf == 1)//{//    //subRL的右子树新增//    parent->_bf = -1;//    subRL->_bf = 0;//    subR->_bf = 0;//}//else//{//    assert(false);//}}// blacknum是根结点到当前结点的黑色结点数量bool check(Node* root, int blacknum, int count){if (root == nullptr){if (count != blacknum){cout << "黑色结点数量不等" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << "有连续的红色结点" << endl;return false;}if (root->_col == BLACK){++blacknum;}return check(root->_left, blacknum, count) && check(root->_right, blacknum, count);}bool isbalance(){if (_root == nullptr){return true;}if (_root->_col == RED){return false;}//找最左路径作为黑色结点数目的参考值Node* cur = _root;int count = 0;while (cur){if (cur->_col == BLACK)++count;cur = cur->_left;}int blacknum = 0;return check(_root, blacknum, count);}
private:Node* _root = nullptr;
};

map代码

#pragma once
#include"RBTree.h"namespace bear
{template<class K,class V>class map{public:struct MapKeyofT{const K& operator()(const pair<K,V>& kv){return kv.first;}};typedef typename RBTree<K, pair<K, V>, MapKeyofT>::iterator iterator;iterator begin(){return _t.begin();}iterator end(){return _t.end();}V& operator[](const K& key){pair<iterator, bool> ret = insert(make_pair(key, V()));return ret.first->second;}pair<iterator, bool> Insert(const pair<K, V>& kv){return _t.insert(kv);}private:RBTree<K, pair<K, V>, MapKeyofT> _t;};
}

set代码

#pragma once
#include"RBTree.h"namespace bear
{template<class K>class set{public:struct SetKeyofT{const K& operator()(const K& key){return key;}};typedef typename RBTree<K, K, SetKeyofT>::const_iterator iterator;typedef typename RBTree<K, K, SetKeyofT>::const_iterator const_iterator;iterator begin() const{return _t.begin();}iterator end() const{return _t.end();}pair<iterator, bool> Insert(const K& key){return _t.insert(key);}private:RBTree<K, K, SetKeyofT> _t;};
}

哈希

哈希表

//哈希表
namespace hashtable
{//状态enum Status{EMPTY,//空EXIST,//存在DELETE//删除};template<class K,class V>struct HashData{pair<K, V> _kv;//键值对Status _s = EMPTY;//状态};template<class K, class V>class HashTable{public://构造函数HashTable(){_tables.resize(10);}//插入函数bool Insert(const pair<K, V>& kv){//用find判断是否已经有了if (Find(kv.first)){return false;}//负载因子if (_n * 10 / _tables.size() >= 7)//如果负载因子>0.7,那么需要扩容{//开新表size_t newsize = _tables.size() * 2;HashTable<K, V> newht;newht._tables.resize(newsize);//遍历旧表for (size_t i = 0; i < _tables.size(); ++i){if (_tables[i]._s == EXIST){newht.Insert(_tables[i]._kv);}}//交换新旧表_tables.swap(newht._tables);}size_t hash = kv.first % _tables.size();//计算哈希值//开始寻找可插入位置while (_tables[hash]._s == EXIST)//如果该位置已经有值,那么线性向前探测{hash++;//线性探测,每次往前一位探测hash %= _tables.size();//防止探测越界}//开始插入_tables[hash]._kv = kv;_tables[hash]._s = EXIST;++_n;return true;}//查找函数HashData<K, V>* Find(const K& key){size_t hash = key % _tables.size();//计算哈希值while (_tables[hash]._s != EMPTY)//找到位置为空的就停止寻找{if (_tables[hash]._kv.first == key && _tables[hash]._s == EMPTY)//找到了{return &_tables[hash];//返回地址}//如果没找到,线性往前探测hash++;hash %= _tables.size();//防止探测越界}//出了循环return NULL;//返回空}//删除函数bool Erase(const K& key){HashData<K, V>* ret = Find(key);//先获取key的地址if (ret != NULL)//如果地址不为空,说明存在{ret->_s = DELETE;//状态改为删除--_n;//空间-1return true;}else//如果地址为空{return false;//删除失败}}private:vector<HashData<K, V>> _tables;size_t _n = 0;//存储关键字的格个数};
}

哈希桶

//哈希桶
namespace hashbucket
{template<class K,class V>struct HashNode{HashNode* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}};template<class K,class V>class HashTables{typedef HashNode<K, V> Node;public://构造函数HashTables(){_tables.resize(10);}//析构函数~HashTables(){for (size_t i = 0; i < _tables.size(); ++i){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}//插入函数bool Insert(const pair<K, V>& kv){if (Find(kv.first)){return false;}//负载因子if (_n == _tables.size())//因子到1开始扩容{//开新表vector<Node*> newtables;newtables.resize(_tables.size() * 2, nullptr);//遍历旧表for (size_t i = 0; i < _tables.size(); ++i){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//记录下一个的地址size_t hash = cur->_kv.first % newtables.size();//计算哈希值//头插cur->_next = newtables[i];newtables[i] = cur;//更新下一个位置cur = next;}//将表置空_tables[i] = nullptr;}//交换新旧表_tables.swap(newtables);}size_t hash = kv.first % _tables.size();//计算哈希值Node* newnode = new Node(kv);//创建结点//头插newnode->_next = _tables[hash];_tables[hash] = newnode;++_n;return true;}//查找函数Node* Find(const K& key){size_t hash = key % _tables.size();//计算哈希值Node* cur = _tables[hash];//寻找位置while (cur)//cur不为空则继续寻找{if (cur->_kv.first == key)//相同则找到{return cur;//返回找到的地址}//不相同则判断下一个cur = cur->_next;}//出循环还没找到则返回空return NULL;}//删除函数bool Erase(const K& key){size_t hash = key % _tables.size();//计算哈希值Node* prev = nullptr;//记录前地址Node* cur = _tables[hash];//记录当前地址while (cur)//不为空则继续寻找{if (cur->_kv.first == key)//相同则找到{if (prev == nullptr)//如果为头删{_tables[hash] = cur->_next;//将下一个结点地址放到指针数组上}else{prev->_next = cur->_next;//将前一个结点连接后一个地址}delete cur;//删除找到的结点return true;}prev = cur;cur = cur->_next;}//出循环还没找到则删除失败return false;}private:vector<Node*> _tables;size_t _n = 0;};
}

哈希桶封装unordered_map、unordered_set

哈希桶代码

//哈希桶
namespace hashbucket
{//结点template<class T>struct HashNode{HashNode* _next;T _data;HashNode(const T& data):_data(data), _next(nullptr){}};//解决冲突的前置声明template<class K, class T, class KeyofT>class HashTables;//迭代器template<class K,class T,class Ref, class Ptr, class KeyofT>struct HTiterator{typedef HashNode<T> Node;typedef HTiterator<K, T, Ref, Ptr, KeyofT> Self;Node* _node;const HashTables<K, T, KeyofT>* _pht;//迭代器要哈希表,哈希表要迭代器,冲突//vector<Node*>* _ptb;//直接使用私有类,就不会冲突了size_t _hash;HTiterator(Node* node,HashTables<K,T,KeyofT>* pht,size_t hash):_node(node),_pht(pht),_hash(hash){}HTiterator(Node* node, const HashTables<K, T, KeyofT>* pht, size_t hash):_node(node), _pht(pht), _hash(hash){}Self& operator++(){if (_node->_next){_node = _node->_next;}else{++_hash;while (_hash < _pht->_tables.size()){if (_pht->_tables[_hash]){_node = _pht->_tables[_hash];break;}++_hash;}if (_hash == _pht->_tables.size()){_node = nullptr;}}return *this;}Ref operator*(){return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const Self& s){return _node != s._node;}};//哈希表template<class K, class T,class KeyofT>class HashTables{typedef HashNode<T> Node;//友元函数,让外部类能访问私有成员template<class K, class T, class Ref, class Ptr, class KeyofT>friend struct HTiterator;public:typedef HTiterator<K, T, T&, T*, KeyofT> iterator;typedef HTiterator<K, T, const T&, const T*, KeyofT> const_iterator;iterator begin(){for (size_t i = 0; i < _tables.size(); ++i){if (_tables[i]){return iterator(_tables[i], this, i);}}return end();}iterator end(){return iterator(nullptr, this, -1);}const_iterator begin() const{for (size_t i = 0; i < _tables.size(); ++i){if (_tables[i]){return const_iterator(_tables[i], this, i);}}return end();}const_iterator end() const{return const_iterator(nullptr, this, -1);}//构造函数HashTables(){_tables.resize(10);}//析构函数~HashTables(){for (size_t i = 0; i < _tables.size(); ++i){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}//插入函数pair<iterator,bool> Insert(const T& data){KeyofT kot;iterator it = Find(kot(data));if (it != end()){return make_pair(it,false);}//负载因子if (_n == _tables.size())//因子到1开始扩容{//开新表vector<Node*> newtables;newtables.resize(_tables.size() * 2, nullptr);//遍历旧表for (size_t i = 0; i < _tables.size(); ++i){Node* cur = _tables[i];while (cur){Node* next = cur->_next;//记录下一个的地址size_t hash = kot(cur->_data) % newtables.size();//计算哈希值//头插cur->_next = newtables[i];newtables[i] = cur;//更新下一个位置cur = next;}//将表置空_tables[i] = nullptr;}//交换新旧表_tables.swap(newtables);}size_t hash = kot(data) % _tables.size();//计算哈希值Node* newnode = new Node(data);//创建结点//头插newnode->_next = _tables[hash];_tables[hash] = newnode;++_n;return make_pair(iterator(newnode,this,hash), true);}//查找函数iterator Find(const K& key){KeyofT kot;size_t hash = key % _tables.size();//计算哈希值Node* cur = _tables[hash];//寻找位置while (cur)//cur不为空则继续寻找{if (kot(cur->_data) == key)//相同则找到{return iterator(cur,this,hash);//返回找到的地址}//不相同则判断下一个cur = cur->_next;}//出循环还没找到则返回空return end();}//删除函数bool Erase(const K& key){KeyofT kot;size_t hash = key % _tables.size();//计算哈希值Node* prev = nullptr;//记录前地址Node* cur = _tables[hash];//记录当前地址while (cur)//不为空则继续寻找{if (kot(cur->_data) == key)//相同则找到{if (prev == nullptr)//如果为头删{_tables[hash] = cur->_next;//将下一个结点地址放到指针数组上}else{prev->_next = cur->_next;//将前一个结点连接后一个地址}delete cur;//删除找到的结点return true;}prev = cur;cur = cur->_next;}//出循环还没找到则删除失败return false;}private:vector<Node*> _tables;size_t _n = 0;};}

unordered_set

#pragma once
#include"hashtable.h"namespace bear
{template<class K>class unordered_set{struct SetKeyofT{const K& operator()(const K& key){return key;}};public:typedef typename hashbucket::HashTables<K, K, SetKeyofT>::const_iterator iterator;typedef typename hashbucket::HashTables<K, K, SetKeyofT>::const_iterator const_iterator;//iterator begin()//{//    return _ht.begin();//}//iterator end()//{//    return _ht.end();//}const_iterator begin() const{return _ht.begin();}const_iterator end() const{return _ht.end();}pair<const_iterator,bool> Insert(const K& key){auto ret = _ht.Insert(key);return pair<const_iterator, bool>(const_iterator(ret.first._node,ret.first._pht,ret.first._hash),ret.second);}iterator Find(const K& key){return _ht.Find(key);}bool Erase(const K& key){return _ht.Erase(key);}private:hashbucket::HashTables<K, K, SetKeyofT> _ht;};
}

unordered_map

#pragma once
#include"hashtable.h"namespace bear
{template<class K,class V>class unordered_map{struct MapKeyofT{const K& operator()(const pair<K,V>& kv){return kv.first;}};public:typedef typename hashbucket::HashTables<K, pair<const K, V>, MapKeyofT>::iterator iterator;typedef typename hashbucket::HashTables<K, pair<const K, V>, MapKeyofT>::const_iterator const_iterator;iterator begin(){return _ht.begin();}iterator end(){return _ht.end();}const_iterator begin() const{return _ht.begin();}const_iterator end() const{return _ht.end();}pair<iterator, bool> Insert(const pair<K,V>& kv){return _ht.Insert(kv);}V& operator[](const K& key){pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}V& operator[](const K& key) const{pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));return ret.first->second;}iterator Find(const K& key){return _ht.Find(key);}bool Erase(const K& key){return _ht.Erase(key);}private:hashbucket::HashTables<K, pair<const K, V>, MapKeyofT> _ht;};
}

这篇关于学过的模拟实现(不定期更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044367

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一