进程通信(IPC-Inter Process Communication)

2024-06-09 04:04

本文主要是介绍进程通信(IPC-Inter Process Communication),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

进程之间的通信通过内核空间实现

IPC技术

管道(匿名管道/命名管道-FIFO队列) ②System V IPC(消息队列、信号量和共享内存)  ③套接字(UNIX套接字&Internet套接字)

※信号

软中断,信号提供了一种处理异步事件的方法,作为进程通信的一种机制,由一个进程发送给另一个进程。<signal.h>

信号的产生情况

①用户在终端按下一个组合键;

②硬件异常; //①②硬件问题

③进程调用 kill 函数发送信号;

④当检测到某软件产生异常时产生信号;      //③④软件问题

信号处理

阻塞信号/捕获信号/忽略信号/执行默认动作

【SIGKILL&SIGSTOP 信号是无法捕捉和忽略的】

查看信号 kill -l / trap -l;

信号操作的函数

(1) int kill (pid_t pid,int sig);     //向指定进程发送信号

头文件:<sys/types.h>   <sysnal.h>

pid : ①>0; 发送指定pid的进程 

②=0;信号发送给和目前进程在同一个进程组的所有进程

③=-1;广播到系统内所有进程 

④<0;  发送信号给PID为pid绝对值的进程

(2) int alarm(int second);    //定时器发送信号SIGALRM,默认处理是终止当前进程;

头文件:<unistd.h>

函数的返回值是0/设定闹钟还余下的秒数

(3) int raise(int sig);  //发送信号给当前的进程

头文件:<signal.h>

sig参数主要是信号参数

执行成功返回0,失败返回-1;

等价于 kill (getpid(),sig);

(4) void signal(*signal(it signum,void(*handler)(int)))(int);

头文件:#include <signal.h>

signal()会按照signum指定的信号编号来设置信号的处理函数。当指定的信号到达就会处理*handler指定的函数执行;若该函数不在,则需要是以下的两个常数之一:

SIG_IGN 忽略参数signum指定的信号

SIG_DFL 将参数signum指定的信号重设为 核心预设的信号处理方式 

(5) 信号集操作函数--#include <signal.h>

int sigemptyset(sigset_t *set);             //清空信号集 成功返回0 错误返回-1

int sigfillset(sigset_t *set);                  //初始化信号集  成功返回0 失败返回-1

int sigaddset(sigset_t *set,int signo);   //将signo信号加入到信号集set 成功返回0 失败返回-1

int sigdelset(sigset_t *set,int signo);       //将指定信号从信号集中添加或者删除

int sigismember(const sigset_t *set,int signo); 

                                          //判断指定信号是否包含在信号集中 (不)包含返回1(0) 失败返回-1

int sigprocmask(int how,const sigset_t *set,sigset_t *old) //查询/设置信号掩码

   //how参数:   --成功返回0,失败返回-1

 //SIG_BLOCK: 新的信号掩码由目前的信号掩码和set指定的信号掩码的并集

 //SIG_UNBLOCK:将目前的信号掩码删除set指定的信号掩码

 //SIG_SETMASK: 目前的信号掩码设置成set指定的信号掩码

信号发送例:设计一个程序,要求用户进程创建一个子进程,父进程向子进程发出SIGKILL信号,子进程收到此信号,结束子进程的运行;

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
{pid_t sonpid;int ret;sonpid=fork();  //fork()函数执行一次,返回两次;在父进程中,fork返回新建进程ID;在子 //进程中fork返回0,错误返回负值;int newret;if(sonpid<0){perror("创建进程失败!");exit(1);  //异常结束}else if(sonpid==0){raise(SIGSTOP);   //如果是子进程,发送一个不能被阻塞、处理或阻塞的暂停信号;exit(0);  //正常结束}else{printf("子进程的进程号是%d\n",sonpid);if((waitpid(sonpid,NULL,WNOHANG))==0){if(ret=kill(sonpid,SIGKILL)==0){printf("用kill函数返回值是:%d,发出的SIGKILL信号结>束的进程进程号:%d\n",ret,sonpid);}else{perror("kill函数结束子进程失败");}}}
}

 信号处理例:要求程序运行后进入无限循环,当用户按下中断键(Ctrl+C)时,进入程序的自定义信号处理函数,当用户再次按下中断键(Ctrl+C)后,结束程序运行;

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#include <signal.h>
void fun_ctrl_c();    //自定义信号函数
int main()
{(void)signal(SIGINT,fun_ctrl_c);printf("主程序:主程序进入一个循环...\n");while(1){printf("这是一个无限的循环(退出请按‘Ctrl+C’)\n");sleep(3);}exit(0);
}void fun_ctrl_c()
{printf("\t你按了Ctrl+C!\n");printf("\t此例不处理,重新恢复SIGINT信号的系统默认处理\n");(void) signal(SIGINT,SIG_DFL);   //重新恢复SIGINT的系统默认处理
}

 

信号阻塞例1:

要求主程序运行时,即使按下Ctrl+C也不影响正在运行的程序,即让信号处于阻塞状态,当主体程序运行完毕后才进入自定义信号处理函数;

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/stat.h>
#include <unistd.h>
void fun_ctrl_c();//自定义信号函数
int main()
{int i;sigset_t set,pendset;  //定义了两个信号集struct sigaction action;(void) signal(SIGINT,fun_ctrl_c);if(sigemptyset(&set)<0)   //初始化set信号集{perror("初始化集合错误!\n");}if(sigaddset(&set,SIGINT)<0)   //将SIGINT信号加入到set信号集{perror("加入信号集错误\n");}if(sigprocmask(SIG_BLOCK,&set,NULL)<0)  //将当前的信号集合加入到当前进程的//阻塞集合中{perror("往信号阻塞集中增加一个信号集合错误");}else    //将当前信号集加入到阻塞集合中{for(int i=0;i<5;i++){printf("此文字表示程序在阻塞状态\n");sleep(2);}}if(sigprocmask(SIG_UNBLOCK,&set,NULL)<0)  //将当前的阻塞集中删除一个信号集{perror("从信号阻塞集删除一个信号集合错误");}
}
void fun_ctrl_c()  //自定义信号函数
{printf("\t你按了Ctrl+C但是系统未处理a... ");//要求中断键不影响当前程序运行printf("\t信号处理函数:要处理的东西在处理函数中编程!\n");printf("\t这个案例不处理,直接退出!\n");(void) signal(SIGINT,SIG_DFL);         //恢复默认SIGINT信号的系统默认处理
}

过程:①初始化set信号集; ②将SIGINT信号加入到set信号集;  ③将set信号集加入到阻塞集;

...   ④将set信号集从阻塞集删除 ->5次循环 程序结束 SIGINT执行默认系统处理 直接退出系统;

信号阻塞例2:

信号SIGINT(Ctrl+C)和SIGTSTP(Ctrl+Z)是可以阻塞的,信号SIGQUIT(Ctrl+\)是不可以阻塞;

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>
void fun_ctrl_c();
void fun_ctrl_z();
void fun_ctrl_d();
int main()
{int i;sigset_t set,pendset;struct sigaction action;(void) signal (SIGINT,fun_ctrl_c);(void) signal (SIGTSTP,fun_ctrl_z);(void) signal (SIGQUIT,fun_ctrl_d);if(sigemptyset(&set)<0) //初始化set信号集{perror("初始化信号集错误\n");}if(sigaddset(&set,SIGTSTP)<0)  //将SIGTSTP信号加入到set{perror("Ctrl+Z加入信号集错误\n");}if(sigaddset(&set,SIGINT)<0)  //将SIGINT信号加入到set{perror("Ctrl+C加入信号集错误\n");}if(sigprocmask(SIG_BLOCK,&set,NULL)<0)   //信号集加入到当前进程的阻塞集合{perror("加入阻塞集合失败\n");}else{printf("加入到阻塞集合成功\n");for(i=0;i<10;i++){printf("Ctrl+C和Ctrl+Z信号处于阻塞,Ctrl+'\'信号未被阻塞\n");sleep(3);}}if(sigprocmask(SIG_UNBLOCK,&set,NULL)<0)  //将当前信号集从阻塞信号集中删除{perror("从阻塞信号集中删除当前信号集失败\n");}
}void fun_ctrl_c()  //自定义信号
{int n;printf("\t你已经按了Ctrl+C 系统未处理...");for(n=0;n<4;n++){printf("\t正在处理Ctrl+C信号处理函数");}
}
void fun_ctrl_z()  //自定义信号
{int n;printf("\t你已经按了Ctrl+Z 系统未处理...");for(n=0;n<6;n++){printf("\t正在处理Ctrl+Z信号处理函数");}
}
void fun_ctrl_d()
{int n ;printf("\t你已经按了Ctrl+'\' 系统处理了该信号!!\n");for(n=0;n<2;n++){printf("\t正在处理Ctrl+'\'信号处理函数");}
}

※管道

 无名管道pipe  &  FIFO管道(命名管道),都是通过内核缓冲区实现数据的传输;

pipe用于父进程和子进程之间的通信,通过pipe()系统调用创建并打开;

FIFO在磁盘上有对应的结点,但是有数据块,通过mknod()系统调用或mkfifo()函数来建立;一旦建立,任何进程都可以通过文件名将其打开进行读写;

管道实质是一个内核缓冲区,以先进先出的方式从缓冲区写读数据;

无名管道

建立管道用pipe函数,管道操作:

①父进程用pipe开辟管道,得到的两个文件描述符指向管道的两端;

②父进程用fork创建子进程,子进程也有两个文件描述符指向管道两端;、

③父(子)进程关闭读(写) 端,就可以进行写(读)操作;--读read函数 /  写write函数

(1)pipe函数--#include <unistd.h>

int pipe(int filedes[2]);

filedes[0]管道读取端;  filedes[1]管道写入端;  成功执行返回0,错误返回-1;

(2)memset函数--#include<string.h>

void *memset(void *s,int c,size_t n); 

s指向的内存区域内前n个字节以参数c填入,返回指向s的指针;c虽然声明是int,但是必须是unsigned char,范围在0-255; 

例:要求创建一个管道,复制进程【创建子进程】,父进程往管道中写入字符串,子进程从管道中读取前字符串;

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <string.h>
int main()
{pid_t result;  //子进程返回的进程号int r_num;int pipe_fd[2]; //两个文件描述符char buf_r[100],buf_w[100];     //读写字符数组memset(buf_r,0,sizeof(buf_r));   //初始化数组设置为0//if(pipe(pipe_fd)<0){perror("创建管道失败\n");return -1;}result = fork();//创建子进程,复制进程if(result<0){perror("创建子进程失败\n");exit(-1);}else if(result==0)  //子进程{close(pipe_fd[1]);  //关闭写if((r_num=read(pipe_fd[0],buf_r,100))>0)   //进行读{printf("子进程从管道中读取%d个字符,读取的字符内容是:%s\n",r_num,buf_r);}close(pipe_fd[0]);   //关闭读exit(0);//正常退出}else   //父进程{close(pipe_fd[0]);   //关闭读printf("请从键盘输入要写入管道的字符串\n");scanf("%s",buf_w);if(write(pipe_fd[1],buf_w,strlen(buf_w))!=-1)  //进行写{printf("父进程向管道写入:%s\n",buf_w);}close(pipe_fd[1]);     //关闭写waitpid(result,NULL,0);  //waitpid,阻塞父进程,等待子进程退出;exit(0);}
}

注意:空字符不读取;

命名管道

命名管道的名字对应磁盘的索引节点,用该文件名,任何进程都有相应的权限对其进行访问。

创建命名管道的方式:mkfifo()和mknode()函数

例:设计两个程,要求用命名管道FIFO实现简单的聊天功能。

高级管道设计

:设计一个程序,要求用popen创建管道,实现“ls -l|grep 7-9c”的功能;

//高级管道设计
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
int main()
{FILE *fp; //文件指针int num;char buf[5000];  //字符缓冲区memset(buf,0,sizeof(buf));   //将buf所指向的内存区域的前sizeof(buf)得到>的字节//设置为0,初始化清空的操作printf("建立管道...\n");fp=popen("ls -l","r");   //调用popen函数,建立读管道if(fp!=NULL){num=fread(buf,sizeof(char),5000,fp);/*if(num>0){printf("第一个命令是'ls-l',执行结果如下:\n");printf("%s\n",buf);}*/if(num<0){perror("读命令失败!\n");exit(-1);}pclose(fp);}else{printf("用popen创建管道失败!\n");return 1;}fp=popen("grep insert.c","w");  //建立写管道printf("第二个命令是grep insert.c,运行结果是:\n");fprintf(fp,"%s\n",buf);pclose(fp);return 0;
}

这篇关于进程通信(IPC-Inter Process Communication)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044170

相关文章

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Python模拟串口通信的示例详解

《Python模拟串口通信的示例详解》pySerial是Python中用于操作串口的第三方模块,它支持Windows、Linux、OSX、BSD等多个平台,下面我们就来看看Python如何使用pySe... 目录1.win 下载虚www.chinasem.cn拟串口2、确定串口号3、配置串口4、串口通信示例5