进程通信(IPC-Inter Process Communication)

2024-06-09 04:04

本文主要是介绍进程通信(IPC-Inter Process Communication),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

进程之间的通信通过内核空间实现

IPC技术

管道(匿名管道/命名管道-FIFO队列) ②System V IPC(消息队列、信号量和共享内存)  ③套接字(UNIX套接字&Internet套接字)

※信号

软中断,信号提供了一种处理异步事件的方法,作为进程通信的一种机制,由一个进程发送给另一个进程。<signal.h>

信号的产生情况

①用户在终端按下一个组合键;

②硬件异常; //①②硬件问题

③进程调用 kill 函数发送信号;

④当检测到某软件产生异常时产生信号;      //③④软件问题

信号处理

阻塞信号/捕获信号/忽略信号/执行默认动作

【SIGKILL&SIGSTOP 信号是无法捕捉和忽略的】

查看信号 kill -l / trap -l;

信号操作的函数

(1) int kill (pid_t pid,int sig);     //向指定进程发送信号

头文件:<sys/types.h>   <sysnal.h>

pid : ①>0; 发送指定pid的进程 

②=0;信号发送给和目前进程在同一个进程组的所有进程

③=-1;广播到系统内所有进程 

④<0;  发送信号给PID为pid绝对值的进程

(2) int alarm(int second);    //定时器发送信号SIGALRM,默认处理是终止当前进程;

头文件:<unistd.h>

函数的返回值是0/设定闹钟还余下的秒数

(3) int raise(int sig);  //发送信号给当前的进程

头文件:<signal.h>

sig参数主要是信号参数

执行成功返回0,失败返回-1;

等价于 kill (getpid(),sig);

(4) void signal(*signal(it signum,void(*handler)(int)))(int);

头文件:#include <signal.h>

signal()会按照signum指定的信号编号来设置信号的处理函数。当指定的信号到达就会处理*handler指定的函数执行;若该函数不在,则需要是以下的两个常数之一:

SIG_IGN 忽略参数signum指定的信号

SIG_DFL 将参数signum指定的信号重设为 核心预设的信号处理方式 

(5) 信号集操作函数--#include <signal.h>

int sigemptyset(sigset_t *set);             //清空信号集 成功返回0 错误返回-1

int sigfillset(sigset_t *set);                  //初始化信号集  成功返回0 失败返回-1

int sigaddset(sigset_t *set,int signo);   //将signo信号加入到信号集set 成功返回0 失败返回-1

int sigdelset(sigset_t *set,int signo);       //将指定信号从信号集中添加或者删除

int sigismember(const sigset_t *set,int signo); 

                                          //判断指定信号是否包含在信号集中 (不)包含返回1(0) 失败返回-1

int sigprocmask(int how,const sigset_t *set,sigset_t *old) //查询/设置信号掩码

   //how参数:   --成功返回0,失败返回-1

 //SIG_BLOCK: 新的信号掩码由目前的信号掩码和set指定的信号掩码的并集

 //SIG_UNBLOCK:将目前的信号掩码删除set指定的信号掩码

 //SIG_SETMASK: 目前的信号掩码设置成set指定的信号掩码

信号发送例:设计一个程序,要求用户进程创建一个子进程,父进程向子进程发出SIGKILL信号,子进程收到此信号,结束子进程的运行;

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
int main()
{pid_t sonpid;int ret;sonpid=fork();  //fork()函数执行一次,返回两次;在父进程中,fork返回新建进程ID;在子 //进程中fork返回0,错误返回负值;int newret;if(sonpid<0){perror("创建进程失败!");exit(1);  //异常结束}else if(sonpid==0){raise(SIGSTOP);   //如果是子进程,发送一个不能被阻塞、处理或阻塞的暂停信号;exit(0);  //正常结束}else{printf("子进程的进程号是%d\n",sonpid);if((waitpid(sonpid,NULL,WNOHANG))==0){if(ret=kill(sonpid,SIGKILL)==0){printf("用kill函数返回值是:%d,发出的SIGKILL信号结>束的进程进程号:%d\n",ret,sonpid);}else{perror("kill函数结束子进程失败");}}}
}

 信号处理例:要求程序运行后进入无限循环,当用户按下中断键(Ctrl+C)时,进入程序的自定义信号处理函数,当用户再次按下中断键(Ctrl+C)后,结束程序运行;

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#include <signal.h>
void fun_ctrl_c();    //自定义信号函数
int main()
{(void)signal(SIGINT,fun_ctrl_c);printf("主程序:主程序进入一个循环...\n");while(1){printf("这是一个无限的循环(退出请按‘Ctrl+C’)\n");sleep(3);}exit(0);
}void fun_ctrl_c()
{printf("\t你按了Ctrl+C!\n");printf("\t此例不处理,重新恢复SIGINT信号的系统默认处理\n");(void) signal(SIGINT,SIG_DFL);   //重新恢复SIGINT的系统默认处理
}

 

信号阻塞例1:

要求主程序运行时,即使按下Ctrl+C也不影响正在运行的程序,即让信号处于阻塞状态,当主体程序运行完毕后才进入自定义信号处理函数;

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/stat.h>
#include <unistd.h>
void fun_ctrl_c();//自定义信号函数
int main()
{int i;sigset_t set,pendset;  //定义了两个信号集struct sigaction action;(void) signal(SIGINT,fun_ctrl_c);if(sigemptyset(&set)<0)   //初始化set信号集{perror("初始化集合错误!\n");}if(sigaddset(&set,SIGINT)<0)   //将SIGINT信号加入到set信号集{perror("加入信号集错误\n");}if(sigprocmask(SIG_BLOCK,&set,NULL)<0)  //将当前的信号集合加入到当前进程的//阻塞集合中{perror("往信号阻塞集中增加一个信号集合错误");}else    //将当前信号集加入到阻塞集合中{for(int i=0;i<5;i++){printf("此文字表示程序在阻塞状态\n");sleep(2);}}if(sigprocmask(SIG_UNBLOCK,&set,NULL)<0)  //将当前的阻塞集中删除一个信号集{perror("从信号阻塞集删除一个信号集合错误");}
}
void fun_ctrl_c()  //自定义信号函数
{printf("\t你按了Ctrl+C但是系统未处理a... ");//要求中断键不影响当前程序运行printf("\t信号处理函数:要处理的东西在处理函数中编程!\n");printf("\t这个案例不处理,直接退出!\n");(void) signal(SIGINT,SIG_DFL);         //恢复默认SIGINT信号的系统默认处理
}

过程:①初始化set信号集; ②将SIGINT信号加入到set信号集;  ③将set信号集加入到阻塞集;

...   ④将set信号集从阻塞集删除 ->5次循环 程序结束 SIGINT执行默认系统处理 直接退出系统;

信号阻塞例2:

信号SIGINT(Ctrl+C)和SIGTSTP(Ctrl+Z)是可以阻塞的,信号SIGQUIT(Ctrl+\)是不可以阻塞;

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>
void fun_ctrl_c();
void fun_ctrl_z();
void fun_ctrl_d();
int main()
{int i;sigset_t set,pendset;struct sigaction action;(void) signal (SIGINT,fun_ctrl_c);(void) signal (SIGTSTP,fun_ctrl_z);(void) signal (SIGQUIT,fun_ctrl_d);if(sigemptyset(&set)<0) //初始化set信号集{perror("初始化信号集错误\n");}if(sigaddset(&set,SIGTSTP)<0)  //将SIGTSTP信号加入到set{perror("Ctrl+Z加入信号集错误\n");}if(sigaddset(&set,SIGINT)<0)  //将SIGINT信号加入到set{perror("Ctrl+C加入信号集错误\n");}if(sigprocmask(SIG_BLOCK,&set,NULL)<0)   //信号集加入到当前进程的阻塞集合{perror("加入阻塞集合失败\n");}else{printf("加入到阻塞集合成功\n");for(i=0;i<10;i++){printf("Ctrl+C和Ctrl+Z信号处于阻塞,Ctrl+'\'信号未被阻塞\n");sleep(3);}}if(sigprocmask(SIG_UNBLOCK,&set,NULL)<0)  //将当前信号集从阻塞信号集中删除{perror("从阻塞信号集中删除当前信号集失败\n");}
}void fun_ctrl_c()  //自定义信号
{int n;printf("\t你已经按了Ctrl+C 系统未处理...");for(n=0;n<4;n++){printf("\t正在处理Ctrl+C信号处理函数");}
}
void fun_ctrl_z()  //自定义信号
{int n;printf("\t你已经按了Ctrl+Z 系统未处理...");for(n=0;n<6;n++){printf("\t正在处理Ctrl+Z信号处理函数");}
}
void fun_ctrl_d()
{int n ;printf("\t你已经按了Ctrl+'\' 系统处理了该信号!!\n");for(n=0;n<2;n++){printf("\t正在处理Ctrl+'\'信号处理函数");}
}

※管道

 无名管道pipe  &  FIFO管道(命名管道),都是通过内核缓冲区实现数据的传输;

pipe用于父进程和子进程之间的通信,通过pipe()系统调用创建并打开;

FIFO在磁盘上有对应的结点,但是有数据块,通过mknod()系统调用或mkfifo()函数来建立;一旦建立,任何进程都可以通过文件名将其打开进行读写;

管道实质是一个内核缓冲区,以先进先出的方式从缓冲区写读数据;

无名管道

建立管道用pipe函数,管道操作:

①父进程用pipe开辟管道,得到的两个文件描述符指向管道的两端;

②父进程用fork创建子进程,子进程也有两个文件描述符指向管道两端;、

③父(子)进程关闭读(写) 端,就可以进行写(读)操作;--读read函数 /  写write函数

(1)pipe函数--#include <unistd.h>

int pipe(int filedes[2]);

filedes[0]管道读取端;  filedes[1]管道写入端;  成功执行返回0,错误返回-1;

(2)memset函数--#include<string.h>

void *memset(void *s,int c,size_t n); 

s指向的内存区域内前n个字节以参数c填入,返回指向s的指针;c虽然声明是int,但是必须是unsigned char,范围在0-255; 

例:要求创建一个管道,复制进程【创建子进程】,父进程往管道中写入字符串,子进程从管道中读取前字符串;

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <string.h>
int main()
{pid_t result;  //子进程返回的进程号int r_num;int pipe_fd[2]; //两个文件描述符char buf_r[100],buf_w[100];     //读写字符数组memset(buf_r,0,sizeof(buf_r));   //初始化数组设置为0//if(pipe(pipe_fd)<0){perror("创建管道失败\n");return -1;}result = fork();//创建子进程,复制进程if(result<0){perror("创建子进程失败\n");exit(-1);}else if(result==0)  //子进程{close(pipe_fd[1]);  //关闭写if((r_num=read(pipe_fd[0],buf_r,100))>0)   //进行读{printf("子进程从管道中读取%d个字符,读取的字符内容是:%s\n",r_num,buf_r);}close(pipe_fd[0]);   //关闭读exit(0);//正常退出}else   //父进程{close(pipe_fd[0]);   //关闭读printf("请从键盘输入要写入管道的字符串\n");scanf("%s",buf_w);if(write(pipe_fd[1],buf_w,strlen(buf_w))!=-1)  //进行写{printf("父进程向管道写入:%s\n",buf_w);}close(pipe_fd[1]);     //关闭写waitpid(result,NULL,0);  //waitpid,阻塞父进程,等待子进程退出;exit(0);}
}

注意:空字符不读取;

命名管道

命名管道的名字对应磁盘的索引节点,用该文件名,任何进程都有相应的权限对其进行访问。

创建命名管道的方式:mkfifo()和mknode()函数

例:设计两个程,要求用命名管道FIFO实现简单的聊天功能。

高级管道设计

:设计一个程序,要求用popen创建管道,实现“ls -l|grep 7-9c”的功能;

//高级管道设计
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
int main()
{FILE *fp; //文件指针int num;char buf[5000];  //字符缓冲区memset(buf,0,sizeof(buf));   //将buf所指向的内存区域的前sizeof(buf)得到>的字节//设置为0,初始化清空的操作printf("建立管道...\n");fp=popen("ls -l","r");   //调用popen函数,建立读管道if(fp!=NULL){num=fread(buf,sizeof(char),5000,fp);/*if(num>0){printf("第一个命令是'ls-l',执行结果如下:\n");printf("%s\n",buf);}*/if(num<0){perror("读命令失败!\n");exit(-1);}pclose(fp);}else{printf("用popen创建管道失败!\n");return 1;}fp=popen("grep insert.c","w");  //建立写管道printf("第二个命令是grep insert.c,运行结果是:\n");fprintf(fp,"%s\n",buf);pclose(fp);return 0;
}

这篇关于进程通信(IPC-Inter Process Communication)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044170

相关文章

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成

ROS话题通信流程自定义数据格式

ROS话题通信流程自定义数据格式 需求流程实现步骤定义msg文件编辑配置文件编译 在 ROS 通信协议中,数据载体是一个较为重要组成部分,ROS 中通过 std_msgs 封装了一些原生的数据类型,比如:String、Int32、Int64、Char、Bool、Empty… 但是,这些数据一般只包含一个 data 字段,结构的单一意味着功能上的局限性,当传输一些复杂的数据,比如:

使用JWT进行安全通信

在现代Web应用中,安全通信是至关重要的。JSON Web Token(JWT)是一种流行的安全通信方式,它允许用户和服务器之间安全地传输信息。JWT是一种紧凑的、URL安全的表示方法,用于在两方之间传输信息。本文将详细介绍JWT的工作原理,并提供代码示例帮助新人理解和实现JWT。 什么是JWT? JWT是一种开放标准(RFC 7519),它定义了一种紧凑且自包含的方式,用于在各方之间以JSO

ROS话题通信机制实操C++

ROS话题通信机制实操C++ 创建ROS工程发布方(二狗子)订阅方(翠花)编辑配置文件编译并执行注意订阅的第一条数据丢失 ROS话题通信的理论查阅ROS话题通信流程理论 在ROS话题通信机制实现中,ROS master 不需要实现,且连接的建立也已经被封装了,需要关注的关键点有三个: 发布方(二狗子)订阅方(翠花)数据(此处为普通文本) 创建ROS工程 创建一个ROS工程

Linux IPC 参数设定,echo 80 /proc/...

文章转自 http://blog.chinaunix.net/uid-22287947-id-1775633.html Linux IPC 参数设定- 命令方式: echo 80 > /proc/sys/vm/overcommit_ratio, etc MSGMNB  每个消息队列的最大字节限制。 MSGMNI  整个系统的最大数量的消息队列。 MSGGSZ  消息片断的大

毫米波移动通信系统中的波束赋形

在毫米波移动通信系统中,系统的频点较高,因此毫米波系统的射频器件易于小型化,然而同时也带来绕射能力差、穿透损耗大、路径损耗大[4][5]等缺点,这将大大降低了毫米波通信系统的接收功率,其中阻挡效应被认为是制约毫米波应用于移动通信系统的关键因素之一。为了对抗毫米波移动通信系统的噪声受限问题,目前普遍认为在毫米波移动通信系统中将会在发射端和接收端上同时使用天线阵列进行发送和接收[4][5],因此必须要

Android进程保活全攻略(中)

在上一篇博客Android进程保活全攻略(上)中介绍了进程保活的背景和一些方法的思路和实现方式,本篇博客我将承接上篇博客,继续进行介绍。 9) 1像素悬浮层 **思路:**1像素悬浮层是传说的QQ黑科技,监控手机锁屏解锁事件,在屏幕锁屏时启动1个像素的 Activity,在用户解锁时将 Activity 销毁掉。注意该 Activity 需设计成用户无感知。通过该方案,可以使进程的优先级在屏幕

Android进程保活全攻略(上)

对于每个公司的APP来说,当然都希望自己APP的进程尽量的不被杀死,于是乎,就有了一些列进程保活的方法出现,网上也有很多关于这类的文章,但网上很多资料往往只告诉了思路,并未将实现代码展示,本次我的博客将分为上下两篇,阐述关于进程保活的所有方法,以及实现的方式,若有错漏之处,大家可以在博客进行留言。 ** 1.进程保活-背景知识 ** (1)什么时候系统会去杀死进程? Android系统会

Android Framework学习(三)之SyetemServer进程启动解析

从上篇博客中,我们知道了Zygote进程启动了SyetemServer进程,本篇博客我们就一起来学习SyetemServer进程。 SystemServer的作用 整个系统的android framework进程启动流程如下: init进程 –> Zygote进程 –> SystemServer进程 –>各种应用进程 SystemServer进程主要的作用是启动各种系统服务,比如Activ

Android Framework学习(二)之Zygote进程启动解析

上篇博客,我们学习了init进程的相关知识,本篇博客我们一次来学习zygote进程的相关知识。 Zygote简介 在Android系统中,JavaVM(Java虚拟机)、应用程序进程以及运行系统的关键服务的SystemServer进程都是由Zygote进程来创建的,我们也将它称为孵化器。它通过fock(复制进程)的形式来创建应用程序进程和SystemServer进程,由于Zygote进程在启动