redis扣减库存

2024-06-08 13:38
文章标签 redis 库存 扣减

本文主要是介绍redis扣减库存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常开发中有很多地方都有类似扣减库存的操作,比如电商系统中的商品库存,抽奖系统中的奖品库存等。

解决方案

  1. 使用mysql数据库,使用一个字段来存储库存,每次扣减库存去更新这个字段。
  2. 还是使用数据库,但是将库存分层多份存到多条记录里面,扣减库存的时候路由一下,这样子增大了并发量,但是还是避免不了大量的去访问数据库来更新库存。
  3. 将库存放到redis使用redis的incrby特性来扣减库存。

分析

在上面的第一种和第二种方式都是基于数据来扣减库存。

基于数据库单库存

第一种方式在所有请求都会在这里等待锁,获取锁有去扣减库存。在并发量不高的情况下可以使用,但是一旦并发量大了就会有大量请求阻塞在这里,导致请求超时,进而整个系统雪崩;而且会频繁的去访问数据库,大量占用数据库资源,所以在并发高的情况下这种方式不适用。

基于数据库多库存

第二种方式其实是第一种方式的优化版本,在一定程度上提高了并发量,但是在还是会大量的对数据库做更新操作大量占用数据库资源。

基于数据库来实现扣减库存还存在的一些问题:

  • 用数据库扣减库存的方式,扣减库存的操作必须在一条语句中执行,不能先selec在update,这样在并发下会出现超扣的情况。如:
update number set x=x-1 where x > 0

理论上即使是这样由于MySQL事务的特性,这种方法只能降低超卖的数量,但是不可能完全避免超扣。因为数据库默认隔离级别是repeatable read,假如库存是5,有A、B两个请求分别创建了事务并且都没有提交,当A事务提交了,改了库存为4,但是因为是事务隔离级别是可重复读的,所有B看不到A事务改的库存。到时B看到的库存还是5,所以B修改库存为4,这样就出现了超扣问题。所以我们扣库存的时候需要将事务隔离级别设置成read commit才可以。(我自己测试没有出现这种情况)

  • MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。

  • 当减库存和高并发碰到一起的时候,由于操作的库存数目在同一行,就会出现争抢InnoDB行锁的问题,导致出现互相等待甚至死锁,从而大大降低MySQL的处理性能,最终导致前端页面出现超时异常。

基于redis

针对上述问题的问题我们就有了第三种方案,将库存放到缓存,利用redis的incrby特性来扣减库存,解决了超扣和性能问题。但是一旦缓存丢失需要考虑恢复方案。比如抽奖系统扣奖品库存的时候,初始库存=总的库存数-已经发放的奖励数,但是如果是异步发奖,需要等到MQ消息消费完了才能重启redis初始化库存,否则也存在库存不一致的问题。

基于redis实现扣减库存的具体实现

  • 我们使用redis的lua脚本来实现扣减库存
  • 由于是分布式环境下所以还需要一个分布式锁来控制只能有一个服务去初始化库存
  • 需要提供一个回调函数,在初始化库存的时候去调用这个函数获取初始化库存

初始化库存回调函数(IStockCallback )

/*** 获取库存回调* @author yuhao.wang*/
public interface IStockCallback {/*** 获取库存* @return*/int getStock();
}

扣减库存服务(StockService)

package com.xiaolyuh.service;import com.xiaolyuh.lock.RedisLock;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisCluster;import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;/*** 扣库存** @author yuhao.wang*/
@Service
public class StockService {Logger logger = LoggerFactory.getLogger(StockService.class);/*** 库存不足*/public static final int LOW_STOCK = 0;/*** 不限库存*/public static final long UNINITIALIZED_STOCK = -1L;/*** Redis 客户端*/@Autowiredprivate RedisTemplate<String, Object> redisTemplate;/*** 执行扣库存的脚本*/public static final String STOCK_LUA;static {/**** @desc 扣减库存Lua脚本* 库存(stock)-1:表示不限库存* 库存(stock)0:表示没有库存* 库存(stock)大于0:表示剩余库存** @params 库存key* @return*      0:库存不足*      -1:库存未初始化*      大于0:剩余库存(扣减之前剩余的库存)*      redis缓存的库存(value)是-1表示不限库存,直接返回1*/StringBuilder sb = new StringBuilder();sb.append("if (redis.call('exists', KEYS[1]) == 1) then");sb.append("    local stock = tonumber(redis.call('get', KEYS[1]));");sb.append("    if (stock == -1) then");sb.append("        return 1;");sb.append("    end;");sb.append("    if (stock > 0) then");sb.append("        redis.call('incrby', KEYS[1], -1);");sb.append("        return stock;");sb.append("    end;");sb.append("    return 0;");sb.append("end;");sb.append("return -1;");STOCK_LUA = sb.toString();}/*** @param key           库存key* @param expire        库存有效时间,单位秒* @param stockCallback 初始化库存回调函数* @return 0:库存不足; -1:库存未初始化; 大于0:扣减库存之前的剩余库存(扣减之前剩余的库存)*/public long stock(String key, long expire, IStockCallback stockCallback) {long stock = stock(key);// 初始化库存if (stock == UNINITIALIZED_STOCK) {RedisLock redisLock = new RedisLock(redisTemplate, key);try {// 获取锁if (redisLock.tryLock()) {// 双重验证,避免并发时重复回源到数据库stock = stock(key);if (stock == UNINITIALIZED_STOCK) {// 获取初始化库存final int initStock = stockCallback.getStock();// 将库存设置到redisredisTemplate.opsForValue().set(key, initStock, expire, TimeUnit.SECONDS);// 调一次扣库存的操作stock = stock(key);}}} catch (Exception e) {logger.error(e.getMessage(), e);} finally {redisLock.unlock();}}return stock;}/*** 获取库存** @param key 库存key* @return 0:库存不足; -1:库存未初始化; 大于0:剩余库存*/public int getStock(String key) {Integer stock = (Integer) redisTemplate.opsForValue().get(key);return stock == null ? -1 : stock;}/*** 扣库存** @param key 库存key* @return 扣减之前剩余的库存【0:库存不足; -1:库存未初始化; 大于0:扣减库存之前的剩余库存】*/private Long stock(String key) {// 脚本里的KEYS参数List<String> keys = new ArrayList<>();keys.add(key);// 脚本里的ARGV参数List<String> args = new ArrayList<>();long result = redisTemplate.execute(new RedisCallback<Long>() {@Overridepublic Long doInRedis(RedisConnection connection) throws DataAccessException {Object nativeConnection = connection.getNativeConnection();// 集群模式和单机模式虽然执行脚本的方法一样,但是没有共同的接口,所以只能分开执行// 集群模式if (nativeConnection instanceof JedisCluster) {return (Long) ((JedisCluster) nativeConnection).eval(STOCK_LUA, keys, args);}// 单机模式else if (nativeConnection instanceof Jedis) {return (Long) ((Jedis) nativeConnection).eval(STOCK_LUA, keys, args);}return UNINITIALIZED_STOCK;}});return result;}}

调用

/*** @author yuhao.wang*/
@RestController
public class StockController {@Autowiredprivate StockService stockService;@RequestMapping(value = "stock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)public Object stock() {// 商品IDlong commodityId = 1;// 库存IDString redisKey = "redis_key:stock:" + commodityId;long stock = stockService.stock(redisKey, 60 * 60, () -> initStock(commodityId));return stock > 0;}/*** 获取初始的库存* @return*/private int initStock(long commodityId) {// TODO 这里做一些初始化库存的操作return 1000;}@RequestMapping(value = "getStock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)public Object getStock() {// 商品IDlong commodityId = 1;// 库存IDString redisKey = "redis_key:stock:" + commodityId;return stockService.getStock(redisKey);}
}

这篇关于redis扣减库存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042343

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

使用Spring Boot集成Spring Data JPA和单例模式构建库存管理系统

引言 在企业级应用开发中,数据库操作是非常重要的一环。Spring Data JPA提供了一种简化的方式来进行数据库交互,它使得开发者无需编写复杂的JPA代码就可以完成常见的CRUD操作。此外,设计模式如单例模式可以帮助我们更好地管理和控制对象的创建过程,从而提高系统的性能和可维护性。本文将展示如何结合Spring Boot、Spring Data JPA以及单例模式来构建一个基本的库存管理系统

laravel框架实现redis分布式集群原理

在app/config/database.php中配置如下: 'redis' => array('cluster' => true,'default' => array('host' => '172.21.107.247','port' => 6379,),'redis1' => array('host' => '172.21.107.248','port' => 6379,),) 其中cl

Redis的rehash机制

在Redis中,键值对(Key-Value Pair)存储方式是由字典(Dict)保存的,而字典底层是通过哈希表来实现的。通过哈希表中的节点保存字典中的键值对。我们知道当HashMap中由于Hash冲突(负载因子)超过某个阈值时,出于链表性能的考虑,会进行Resize的操作。Redis也一样。 在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高字典的缩放效率,避

【吊打面试官系列-Redis面试题】说说 Redis 哈希槽的概念?

大家好,我是锋哥。今天分享关于 【说说 Redis 哈希槽的概念?】面试题,希望对大家有帮助; 说说 Redis 哈希槽的概念? Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key 通过 CRC16 校验后对 16384 取模来决定放置哪个槽, 集群的每个节点负责一部分 hash 槽。

Redis地理数据类型GEO

通常要计算两个地理位置的距离不是很方便,这里可以直接通过Redis提供的GEO操作来完成地理位置相关的计算 1)添加地理位置 语法:geoadd key longitude latitude member [longitude latitude member] ...字段说明:key:存放地理位置的集合名称longitude:地理坐标的经度latitude:地理坐标的纬度member:表示这

Redis-主从集群

主从架构 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 全量同步 主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程: 判断是否是第一次同步,如果是,返回版本信息(replication id 和offset),将salve节点的版本信息变为master的

Redis安装使用总结

一、下载安装 从 github 下载:https://github.com/MSOpenTech/redis/releases 或者 https://github.com/ServiceStack/redis-windows 解压缩,如图: 二、配置 打开redis.windows-sevice.conf文件, 2.1 绑定ip:搜索127.0.0.1 ,发现bind 127.0.0.