redis扣减库存

2024-06-08 13:38
文章标签 redis 库存 扣减

本文主要是介绍redis扣减库存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常开发中有很多地方都有类似扣减库存的操作,比如电商系统中的商品库存,抽奖系统中的奖品库存等。

解决方案

  1. 使用mysql数据库,使用一个字段来存储库存,每次扣减库存去更新这个字段。
  2. 还是使用数据库,但是将库存分层多份存到多条记录里面,扣减库存的时候路由一下,这样子增大了并发量,但是还是避免不了大量的去访问数据库来更新库存。
  3. 将库存放到redis使用redis的incrby特性来扣减库存。

分析

在上面的第一种和第二种方式都是基于数据来扣减库存。

基于数据库单库存

第一种方式在所有请求都会在这里等待锁,获取锁有去扣减库存。在并发量不高的情况下可以使用,但是一旦并发量大了就会有大量请求阻塞在这里,导致请求超时,进而整个系统雪崩;而且会频繁的去访问数据库,大量占用数据库资源,所以在并发高的情况下这种方式不适用。

基于数据库多库存

第二种方式其实是第一种方式的优化版本,在一定程度上提高了并发量,但是在还是会大量的对数据库做更新操作大量占用数据库资源。

基于数据库来实现扣减库存还存在的一些问题:

  • 用数据库扣减库存的方式,扣减库存的操作必须在一条语句中执行,不能先selec在update,这样在并发下会出现超扣的情况。如:
update number set x=x-1 where x > 0

理论上即使是这样由于MySQL事务的特性,这种方法只能降低超卖的数量,但是不可能完全避免超扣。因为数据库默认隔离级别是repeatable read,假如库存是5,有A、B两个请求分别创建了事务并且都没有提交,当A事务提交了,改了库存为4,但是因为是事务隔离级别是可重复读的,所有B看不到A事务改的库存。到时B看到的库存还是5,所以B修改库存为4,这样就出现了超扣问题。所以我们扣库存的时候需要将事务隔离级别设置成read commit才可以。(我自己测试没有出现这种情况)

  • MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。

  • 当减库存和高并发碰到一起的时候,由于操作的库存数目在同一行,就会出现争抢InnoDB行锁的问题,导致出现互相等待甚至死锁,从而大大降低MySQL的处理性能,最终导致前端页面出现超时异常。

基于redis

针对上述问题的问题我们就有了第三种方案,将库存放到缓存,利用redis的incrby特性来扣减库存,解决了超扣和性能问题。但是一旦缓存丢失需要考虑恢复方案。比如抽奖系统扣奖品库存的时候,初始库存=总的库存数-已经发放的奖励数,但是如果是异步发奖,需要等到MQ消息消费完了才能重启redis初始化库存,否则也存在库存不一致的问题。

基于redis实现扣减库存的具体实现

  • 我们使用redis的lua脚本来实现扣减库存
  • 由于是分布式环境下所以还需要一个分布式锁来控制只能有一个服务去初始化库存
  • 需要提供一个回调函数,在初始化库存的时候去调用这个函数获取初始化库存

初始化库存回调函数(IStockCallback )

/*** 获取库存回调* @author yuhao.wang*/
public interface IStockCallback {/*** 获取库存* @return*/int getStock();
}

扣减库存服务(StockService)

package com.xiaolyuh.service;import com.xiaolyuh.lock.RedisLock;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisCluster;import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;/*** 扣库存** @author yuhao.wang*/
@Service
public class StockService {Logger logger = LoggerFactory.getLogger(StockService.class);/*** 库存不足*/public static final int LOW_STOCK = 0;/*** 不限库存*/public static final long UNINITIALIZED_STOCK = -1L;/*** Redis 客户端*/@Autowiredprivate RedisTemplate<String, Object> redisTemplate;/*** 执行扣库存的脚本*/public static final String STOCK_LUA;static {/**** @desc 扣减库存Lua脚本* 库存(stock)-1:表示不限库存* 库存(stock)0:表示没有库存* 库存(stock)大于0:表示剩余库存** @params 库存key* @return*      0:库存不足*      -1:库存未初始化*      大于0:剩余库存(扣减之前剩余的库存)*      redis缓存的库存(value)是-1表示不限库存,直接返回1*/StringBuilder sb = new StringBuilder();sb.append("if (redis.call('exists', KEYS[1]) == 1) then");sb.append("    local stock = tonumber(redis.call('get', KEYS[1]));");sb.append("    if (stock == -1) then");sb.append("        return 1;");sb.append("    end;");sb.append("    if (stock > 0) then");sb.append("        redis.call('incrby', KEYS[1], -1);");sb.append("        return stock;");sb.append("    end;");sb.append("    return 0;");sb.append("end;");sb.append("return -1;");STOCK_LUA = sb.toString();}/*** @param key           库存key* @param expire        库存有效时间,单位秒* @param stockCallback 初始化库存回调函数* @return 0:库存不足; -1:库存未初始化; 大于0:扣减库存之前的剩余库存(扣减之前剩余的库存)*/public long stock(String key, long expire, IStockCallback stockCallback) {long stock = stock(key);// 初始化库存if (stock == UNINITIALIZED_STOCK) {RedisLock redisLock = new RedisLock(redisTemplate, key);try {// 获取锁if (redisLock.tryLock()) {// 双重验证,避免并发时重复回源到数据库stock = stock(key);if (stock == UNINITIALIZED_STOCK) {// 获取初始化库存final int initStock = stockCallback.getStock();// 将库存设置到redisredisTemplate.opsForValue().set(key, initStock, expire, TimeUnit.SECONDS);// 调一次扣库存的操作stock = stock(key);}}} catch (Exception e) {logger.error(e.getMessage(), e);} finally {redisLock.unlock();}}return stock;}/*** 获取库存** @param key 库存key* @return 0:库存不足; -1:库存未初始化; 大于0:剩余库存*/public int getStock(String key) {Integer stock = (Integer) redisTemplate.opsForValue().get(key);return stock == null ? -1 : stock;}/*** 扣库存** @param key 库存key* @return 扣减之前剩余的库存【0:库存不足; -1:库存未初始化; 大于0:扣减库存之前的剩余库存】*/private Long stock(String key) {// 脚本里的KEYS参数List<String> keys = new ArrayList<>();keys.add(key);// 脚本里的ARGV参数List<String> args = new ArrayList<>();long result = redisTemplate.execute(new RedisCallback<Long>() {@Overridepublic Long doInRedis(RedisConnection connection) throws DataAccessException {Object nativeConnection = connection.getNativeConnection();// 集群模式和单机模式虽然执行脚本的方法一样,但是没有共同的接口,所以只能分开执行// 集群模式if (nativeConnection instanceof JedisCluster) {return (Long) ((JedisCluster) nativeConnection).eval(STOCK_LUA, keys, args);}// 单机模式else if (nativeConnection instanceof Jedis) {return (Long) ((Jedis) nativeConnection).eval(STOCK_LUA, keys, args);}return UNINITIALIZED_STOCK;}});return result;}}

调用

/*** @author yuhao.wang*/
@RestController
public class StockController {@Autowiredprivate StockService stockService;@RequestMapping(value = "stock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)public Object stock() {// 商品IDlong commodityId = 1;// 库存IDString redisKey = "redis_key:stock:" + commodityId;long stock = stockService.stock(redisKey, 60 * 60, () -> initStock(commodityId));return stock > 0;}/*** 获取初始的库存* @return*/private int initStock(long commodityId) {// TODO 这里做一些初始化库存的操作return 1000;}@RequestMapping(value = "getStock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)public Object getStock() {// 商品IDlong commodityId = 1;// 库存IDString redisKey = "redis_key:stock:" + commodityId;return stockService.getStock(redisKey);}
}

这篇关于redis扣减库存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042343

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe