redis扣减库存

2024-06-08 13:38
文章标签 redis 库存 扣减

本文主要是介绍redis扣减库存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常开发中有很多地方都有类似扣减库存的操作,比如电商系统中的商品库存,抽奖系统中的奖品库存等。

解决方案

  1. 使用mysql数据库,使用一个字段来存储库存,每次扣减库存去更新这个字段。
  2. 还是使用数据库,但是将库存分层多份存到多条记录里面,扣减库存的时候路由一下,这样子增大了并发量,但是还是避免不了大量的去访问数据库来更新库存。
  3. 将库存放到redis使用redis的incrby特性来扣减库存。

分析

在上面的第一种和第二种方式都是基于数据来扣减库存。

基于数据库单库存

第一种方式在所有请求都会在这里等待锁,获取锁有去扣减库存。在并发量不高的情况下可以使用,但是一旦并发量大了就会有大量请求阻塞在这里,导致请求超时,进而整个系统雪崩;而且会频繁的去访问数据库,大量占用数据库资源,所以在并发高的情况下这种方式不适用。

基于数据库多库存

第二种方式其实是第一种方式的优化版本,在一定程度上提高了并发量,但是在还是会大量的对数据库做更新操作大量占用数据库资源。

基于数据库来实现扣减库存还存在的一些问题:

  • 用数据库扣减库存的方式,扣减库存的操作必须在一条语句中执行,不能先selec在update,这样在并发下会出现超扣的情况。如:
update number set x=x-1 where x > 0

理论上即使是这样由于MySQL事务的特性,这种方法只能降低超卖的数量,但是不可能完全避免超扣。因为数据库默认隔离级别是repeatable read,假如库存是5,有A、B两个请求分别创建了事务并且都没有提交,当A事务提交了,改了库存为4,但是因为是事务隔离级别是可重复读的,所有B看不到A事务改的库存。到时B看到的库存还是5,所以B修改库存为4,这样就出现了超扣问题。所以我们扣库存的时候需要将事务隔离级别设置成read commit才可以。(我自己测试没有出现这种情况)

  • MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。

  • 当减库存和高并发碰到一起的时候,由于操作的库存数目在同一行,就会出现争抢InnoDB行锁的问题,导致出现互相等待甚至死锁,从而大大降低MySQL的处理性能,最终导致前端页面出现超时异常。

基于redis

针对上述问题的问题我们就有了第三种方案,将库存放到缓存,利用redis的incrby特性来扣减库存,解决了超扣和性能问题。但是一旦缓存丢失需要考虑恢复方案。比如抽奖系统扣奖品库存的时候,初始库存=总的库存数-已经发放的奖励数,但是如果是异步发奖,需要等到MQ消息消费完了才能重启redis初始化库存,否则也存在库存不一致的问题。

基于redis实现扣减库存的具体实现

  • 我们使用redis的lua脚本来实现扣减库存
  • 由于是分布式环境下所以还需要一个分布式锁来控制只能有一个服务去初始化库存
  • 需要提供一个回调函数,在初始化库存的时候去调用这个函数获取初始化库存

初始化库存回调函数(IStockCallback )

/*** 获取库存回调* @author yuhao.wang*/
public interface IStockCallback {/*** 获取库存* @return*/int getStock();
}

扣减库存服务(StockService)

package com.xiaolyuh.service;import com.xiaolyuh.lock.RedisLock;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisCluster;import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;/*** 扣库存** @author yuhao.wang*/
@Service
public class StockService {Logger logger = LoggerFactory.getLogger(StockService.class);/*** 库存不足*/public static final int LOW_STOCK = 0;/*** 不限库存*/public static final long UNINITIALIZED_STOCK = -1L;/*** Redis 客户端*/@Autowiredprivate RedisTemplate<String, Object> redisTemplate;/*** 执行扣库存的脚本*/public static final String STOCK_LUA;static {/**** @desc 扣减库存Lua脚本* 库存(stock)-1:表示不限库存* 库存(stock)0:表示没有库存* 库存(stock)大于0:表示剩余库存** @params 库存key* @return*      0:库存不足*      -1:库存未初始化*      大于0:剩余库存(扣减之前剩余的库存)*      redis缓存的库存(value)是-1表示不限库存,直接返回1*/StringBuilder sb = new StringBuilder();sb.append("if (redis.call('exists', KEYS[1]) == 1) then");sb.append("    local stock = tonumber(redis.call('get', KEYS[1]));");sb.append("    if (stock == -1) then");sb.append("        return 1;");sb.append("    end;");sb.append("    if (stock > 0) then");sb.append("        redis.call('incrby', KEYS[1], -1);");sb.append("        return stock;");sb.append("    end;");sb.append("    return 0;");sb.append("end;");sb.append("return -1;");STOCK_LUA = sb.toString();}/*** @param key           库存key* @param expire        库存有效时间,单位秒* @param stockCallback 初始化库存回调函数* @return 0:库存不足; -1:库存未初始化; 大于0:扣减库存之前的剩余库存(扣减之前剩余的库存)*/public long stock(String key, long expire, IStockCallback stockCallback) {long stock = stock(key);// 初始化库存if (stock == UNINITIALIZED_STOCK) {RedisLock redisLock = new RedisLock(redisTemplate, key);try {// 获取锁if (redisLock.tryLock()) {// 双重验证,避免并发时重复回源到数据库stock = stock(key);if (stock == UNINITIALIZED_STOCK) {// 获取初始化库存final int initStock = stockCallback.getStock();// 将库存设置到redisredisTemplate.opsForValue().set(key, initStock, expire, TimeUnit.SECONDS);// 调一次扣库存的操作stock = stock(key);}}} catch (Exception e) {logger.error(e.getMessage(), e);} finally {redisLock.unlock();}}return stock;}/*** 获取库存** @param key 库存key* @return 0:库存不足; -1:库存未初始化; 大于0:剩余库存*/public int getStock(String key) {Integer stock = (Integer) redisTemplate.opsForValue().get(key);return stock == null ? -1 : stock;}/*** 扣库存** @param key 库存key* @return 扣减之前剩余的库存【0:库存不足; -1:库存未初始化; 大于0:扣减库存之前的剩余库存】*/private Long stock(String key) {// 脚本里的KEYS参数List<String> keys = new ArrayList<>();keys.add(key);// 脚本里的ARGV参数List<String> args = new ArrayList<>();long result = redisTemplate.execute(new RedisCallback<Long>() {@Overridepublic Long doInRedis(RedisConnection connection) throws DataAccessException {Object nativeConnection = connection.getNativeConnection();// 集群模式和单机模式虽然执行脚本的方法一样,但是没有共同的接口,所以只能分开执行// 集群模式if (nativeConnection instanceof JedisCluster) {return (Long) ((JedisCluster) nativeConnection).eval(STOCK_LUA, keys, args);}// 单机模式else if (nativeConnection instanceof Jedis) {return (Long) ((Jedis) nativeConnection).eval(STOCK_LUA, keys, args);}return UNINITIALIZED_STOCK;}});return result;}}

调用

/*** @author yuhao.wang*/
@RestController
public class StockController {@Autowiredprivate StockService stockService;@RequestMapping(value = "stock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)public Object stock() {// 商品IDlong commodityId = 1;// 库存IDString redisKey = "redis_key:stock:" + commodityId;long stock = stockService.stock(redisKey, 60 * 60, () -> initStock(commodityId));return stock > 0;}/*** 获取初始的库存* @return*/private int initStock(long commodityId) {// TODO 这里做一些初始化库存的操作return 1000;}@RequestMapping(value = "getStock", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)public Object getStock() {// 商品IDlong commodityId = 1;// 库存IDString redisKey = "redis_key:stock:" + commodityId;return stockService.getStock(redisKey);}
}

这篇关于redis扣减库存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1042343

相关文章

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Redis中如何实现商品秒杀

《Redis中如何实现商品秒杀》:本文主要介绍Redis中如何实现商品秒杀问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录技术栈功能实现步骤步骤一:准备商品库存数据步骤二:实现商品秒杀步骤三:优化Redis性能技术讲解Redis的List类型Redis的Set

Redis如何实现刷票过滤

《Redis如何实现刷票过滤》:本文主要介绍Redis如何实现刷票过滤问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录引言一、概述二、技术选型三、搭建开发环境四、使用Redis存储数据四、使用SpringBoot开发应用五、 实现同一IP每天刷票不得超过次数六

Redis客户端工具之RedisInsight的下载方式

《Redis客户端工具之RedisInsight的下载方式》RedisInsight是Redis官方提供的图形化客户端工具,下载步骤包括访问Redis官网、选择RedisInsight、下载链接、注册... 目录Redis客户端工具RedisInsight的下载一、点击进入Redis官网二、点击RedisI

Redis实现RBAC权限管理

《Redis实现RBAC权限管理》本文主要介绍了Redis实现RBAC权限管理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1. 什么是 RBAC?2. 为什么使用 Redis 实现 RBAC?3. 设计 RBAC 数据结构