LeetCode题练习与总结:三角形最小路径和--120

2024-06-08 08:28

本文主要是介绍LeetCode题练习与总结:三角形最小路径和--120,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目描述

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

示例 2:

输入:triangle = [[-10]]
输出:-10

提示:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -10^4 <= triangle[i][j] <= 10^4

二、解题思路

这个问题可以通过动态规划来解决。我们可以从三角形的底部开始,逐层向上计算每个节点到底部的最小路径和。对于每个节点,其最小路径和等于其值加上其下一层相邻节点的最小路径和。这样,当我们计算到三角形的顶部时,顶部的值就是整个三角形的最小路径和。

具体步骤如下:

  1. 初始化一个与三角形相同大小的二维数组dp,用于存储每个节点到底部的最小路径和。
  2. 从三角形的最后一行开始,将这一行的值复制到dp的对应行。
  3. 从倒数第二行开始,逐行向上计算,对于每一行的每个节点,其最小路径和为该节点的值加上其下一行相邻节点的最小路径和中的较小值。
  4. 当计算到三角形的顶部时,dp[0][0]就是整个三角形的最小路径和。
  5. 返回dp[0][0]作为结果。

三、具体代码

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] dp = new int[n][n];// 初始化dp数组的最后一行for (int i = 0; i < n; i++) {dp[n - 1][i] = triangle.get(n - 1).get(i);}// 从倒数第二行开始向上计算for (int i = n - 2; i >= 0; i--) {for (int j = 0; j <= i; j++) {dp[i][j] = triangle.get(i).get(j) + Math.min(dp[i + 1][j], dp[i + 1][j + 1]);}}// 返回顶部节点的最小路径和return dp[0][0];}
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 初始化dp数组的最后一行需要遍历n个元素,时间复杂度为O(n)。
  • 双层循环中,外层循环执行了n-1次,内层循环在最坏情况下(即倒数第二行)执行了n-1次。
  • 因此,内层循环的总执行次数是1 + 2 + 3 + … + (n-1),这是一个等差数列求和,其和为((1 + n-1) * (n-1)) / 2。
  • 综合外层循环和内层循环,总的时间复杂度是O(n^2)。
2. 空间复杂度
  • dp数组的大小为n x n,用于存储每一行的最小路径和。
  • 因此,空间复杂度主要取决于dp数组的大小,即O(n^2)。

综上所述,代码的时间复杂度是O(n^2),空间复杂度是O(n^2)。

五、总结知识点

  1. 动态规划:这是一种通过将问题分解为更小的子问题来解决复杂问题的方法,通常用于优化问题,如最短路径、最大子数组和等。

  2. 二维数组dp是一个二维数组,用于存储每一行的最小路径和。在Java中,它被初始化为int[n][n],其中n是三角形的行数。

  3. 列表(List)的使用List<List<Integer>> triangle 是一个包含整数列表的列表,用于存储杨辉三角的数据。在这里,它被用来存储输入的三角形。

  4. 循环结构for 循环用于重复执行一系列操作。这里有双层循环,外层循环用于控制行数,内层循环用于计算每一行的最小路径和。

  5. 数学函数Math.min() 函数用于返回两个整数中的较小值。

  6. 数组的索引操作:在更新每一行元素时,代码通过索引来访问和修改二维数组中的元素。

  7. 列表的元素访问triangle.get(i).get(j) 用于获取列表中索引为 i 的子列表中索引为 j 的元素值。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

这篇关于LeetCode题练习与总结:三角形最小路径和--120的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041660

相关文章

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo