LeetCode题练习与总结:三角形最小路径和--120

2024-06-08 08:28

本文主要是介绍LeetCode题练习与总结:三角形最小路径和--120,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目描述

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

示例 2:

输入:triangle = [[-10]]
输出:-10

提示:

  • 1 <= triangle.length <= 200
  • triangle[0].length == 1
  • triangle[i].length == triangle[i - 1].length + 1
  • -10^4 <= triangle[i][j] <= 10^4

二、解题思路

这个问题可以通过动态规划来解决。我们可以从三角形的底部开始,逐层向上计算每个节点到底部的最小路径和。对于每个节点,其最小路径和等于其值加上其下一层相邻节点的最小路径和。这样,当我们计算到三角形的顶部时,顶部的值就是整个三角形的最小路径和。

具体步骤如下:

  1. 初始化一个与三角形相同大小的二维数组dp,用于存储每个节点到底部的最小路径和。
  2. 从三角形的最后一行开始,将这一行的值复制到dp的对应行。
  3. 从倒数第二行开始,逐行向上计算,对于每一行的每个节点,其最小路径和为该节点的值加上其下一行相邻节点的最小路径和中的较小值。
  4. 当计算到三角形的顶部时,dp[0][0]就是整个三角形的最小路径和。
  5. 返回dp[0][0]作为结果。

三、具体代码

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] dp = new int[n][n];// 初始化dp数组的最后一行for (int i = 0; i < n; i++) {dp[n - 1][i] = triangle.get(n - 1).get(i);}// 从倒数第二行开始向上计算for (int i = n - 2; i >= 0; i--) {for (int j = 0; j <= i; j++) {dp[i][j] = triangle.get(i).get(j) + Math.min(dp[i + 1][j], dp[i + 1][j + 1]);}}// 返回顶部节点的最小路径和return dp[0][0];}
}

四、时间复杂度和空间复杂度

1. 时间复杂度
  • 初始化dp数组的最后一行需要遍历n个元素,时间复杂度为O(n)。
  • 双层循环中,外层循环执行了n-1次,内层循环在最坏情况下(即倒数第二行)执行了n-1次。
  • 因此,内层循环的总执行次数是1 + 2 + 3 + … + (n-1),这是一个等差数列求和,其和为((1 + n-1) * (n-1)) / 2。
  • 综合外层循环和内层循环,总的时间复杂度是O(n^2)。
2. 空间复杂度
  • dp数组的大小为n x n,用于存储每一行的最小路径和。
  • 因此,空间复杂度主要取决于dp数组的大小,即O(n^2)。

综上所述,代码的时间复杂度是O(n^2),空间复杂度是O(n^2)。

五、总结知识点

  1. 动态规划:这是一种通过将问题分解为更小的子问题来解决复杂问题的方法,通常用于优化问题,如最短路径、最大子数组和等。

  2. 二维数组dp是一个二维数组,用于存储每一行的最小路径和。在Java中,它被初始化为int[n][n],其中n是三角形的行数。

  3. 列表(List)的使用List<List<Integer>> triangle 是一个包含整数列表的列表,用于存储杨辉三角的数据。在这里,它被用来存储输入的三角形。

  4. 循环结构for 循环用于重复执行一系列操作。这里有双层循环,外层循环用于控制行数,内层循环用于计算每一行的最小路径和。

  5. 数学函数Math.min() 函数用于返回两个整数中的较小值。

  6. 数组的索引操作:在更新每一行元素时,代码通过索引来访问和修改二维数组中的元素。

  7. 列表的元素访问triangle.get(i).get(j) 用于获取列表中索引为 i 的子列表中索引为 j 的元素值。

以上就是解决这个问题的详细步骤,希望能够为各位提供启发和帮助。

这篇关于LeetCode题练习与总结:三角形最小路径和--120的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041660

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的