(第24章)LinuxC本质中函数接口

2024-06-08 07:38
文章标签 接口 函数 24 linuxc 本质

本文主要是介绍(第24章)LinuxC本质中函数接口,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、基本概念
  • 二、strcpy与strncpy
    • 1.通过Man page来分析strcpy和strncpy
      • (1)NAME和SYNOPSIS
      • (2)DESCRIPTION
      • 拷贝数组的越界问题
      • (3)RETURN VALUE,CONFORMING TO,NOTES
      • (4)BUGS, SEE ALSO,COLOPHON
      • 写越界
      • 段错误,缓冲区,缓冲区溢出overflow
  • 三、malloc与free
    • 1.全局数组是无法定义成可变长数组VLA的
    • 2.malloc可在进程的堆空间动态分配内存
      • 野指针
      • 内存泄漏Memory Leak
      • (3)malloc(0) 和ree(NULL)
      • (4) malloc 和 free 的简单实现:基于环形链表
  • 四、传入参数与传出参数

一、基本概念

(1) 函数接口的作用:

  • 函数接口来描述, 即函数名, 参数, 返回值, 只要函数和参数的名字起得合理, 参数和返回值的类型定得准确,
  • 至于这个函数怎么用, 调用者单看函数接口就能猜出八九分了。 函数接口并不能表达函数的全部语义, 这时文档就起了重要的补充作用, 函数的文档该写什么, 怎么写, Man Page为我们做了很好的榜样。

(1)初学者不喜欢看Man page的三个原因?
在这里插入图片描述
在这里插入图片描述

二、strcpy与strncpy

1.通过Man page来分析strcpy和strncpy

(1)NAME和SYNOPSIS

在这里插入图片描述
这个Man Page描述了两个函数, strcpy 和 strncpy , 敲命令 man strcpy 或者 man strncpy 都可以看到这个Man Page。 这两个函数的作用是把一个字符串拷贝给另一个字符串。

SYNOPSIS部分给出了这两个函数的原型, 以及要用这些函数需要包含哪些头文件。 参数 dest 、 src 和 n 都加了下划线。
有时候并不想从头到尾阅读整个Man Page, 而是想查一下某个参数的含义, 通过下划线和参数名就能很快找到你关心的部分

  • dest 表示Destination, src 表示Source, 看名字就能猜到是把 src 所指向的字符串拷贝到 dest 所指向的内存空间
  • 这一点从两个参数的类型也能看出来, dest 是 char * 型的,而 src 是 const char * 型的, 说明 src 所指向的内存空间在函数中只能读不能改写,而 dest 所指向的内存空间在函数中是要改写的, 显然改写的目的是当函数返回后调用者可以读取改写的结果
  • 因此可以猜到 strcpy 函数是这样用的:
char buf[10];
strcpy(buf, "hello");
printf(buf);

(2)DESCRIPTION

在这里插入图片描述

拷贝数组的越界问题

  • 在文档中强调了 strcpy 在拷贝字符串时会把结尾的 ‘\0’ 也拷到 dest 中, 因此保证了 dest 中是以 ‘\0’ 结尾的字符串。
  • 但另外一个要注意的问题是, strcpy 只知道 src 字符串的首地址, 不知道长度, 它会一直拷贝到 ‘\0’ 为止, 所以 dest 所指向的内存空间要足够大, 否则有可能写越界,
  • 例如:
char buf[10] = "abcdefghij", str[4] = "hell";
strcpy(buf, str);
  • 因为 strcpy 函数的实现者通过函数接口无法得知 src 字符串的长度和 dest 内存空间的大小, 所以“确保不会写越界”应该是调用者的责任。

  • 调用者提供的 dest 参数应该指向足够大的内存空间, “确保不会读越界”也是调用者的责任, 调用者提供的 src 参数指向的内存应该确保以 ‘\0’ 结尾。

  • 此外, 文档中还强调了 src 和 dest 所指向的内存空间不能有重叠。 凡是有指针参数的C标准库函数基本上都有这条要求, 每个指针参数所指向的内存空间互不重叠, 例如这样调用是不允许的:

  • strncpy 的参数 n 指定最多从 src 中拷贝 n 个字节到 dest 中, 换句话说, 如果拷贝到 ‘\0’ 就结束, 如果拷贝到 n 个字节还没有碰到 ‘\0’ , 那么也结束。

  • 调用者负责提供适当的 n 值, 以确保读写不会越界, 比如让 n 的值等于 dest 所指向的内存空间的大小:

char buf[10];
strncpy(buf, "hello world", sizeof(buf));
  • 然而这意味着什么呢? 文档中特别用了Warning指出, 这意味着 dest 有可能不是以 ‘\0’ 结尾的。
  • 例如上面的调用, 虽然把 “hello world” 截断到10个字符拷贝至 buf 中, 但 buf 不是以 ‘\0’ 结尾的, 如果再 printf(buf) 就会读越界
  • 如果你需要确保 dest 以 ‘\0’ 结束, 可以这么调用:
char buf[10];
strncpy(buf, "hello world", sizeof(buf));
buf[sizeof(buf)-1] = '\0';
  • strncpy 还有一个特性, 如果 src 字符串全部拷完了不足 n 个字节, 那么还差多少个字节就补多少个 ‘\0’ , 但是正如上面所述, 这并不保证 dest 一定以 ‘\0’ 结束, 当 src 字符串的长度大于 n 时, 不但不补多余的 ‘\0’ , 连字符串的结尾 ‘\0’ 也不拷贝
char buf[10] = "hello";
strcpy(buf, buf+1);

(3)RETURN VALUE,CONFORMING TO,NOTES

在这里插入图片描述

  • 函数的Man Page都有一部分专门讲返回值的。 这两个函数的返回值都是 dest 指针。 可是为什么要返回 dest 指针呢?
    dest 指针本来就是调用者传过去的, 再返回一遍 dest 指针并没有提供任何有用的信息。
    之所以这么规定是为了把函数调用当作一个指针类型的表达式使用, 比如 printf("%s\n", strcpy(buf, “hello”)) , 一举两得, 如果 strcpy 的返回值是 void 就没有这么方便了。
  • CONFORMING TO部分描述了这个函数是遵照哪些标准实现的。 strcpy 和 strncpy 是C标准库函数, 当然遵照C99标准。
  • 以后我们还会看到 libc 中有些函数属于POSIX标准但并不属于C标准, 例如 write(2) 。
  • NOTES部分给出一些提示信息。 这里指出如何确保 strncpy 的 dest 以 ‘\0’ 结尾, 和我们上面给出的代码类似, 但由于 n 是个变量, 在执行 buf[n - 1]= ‘\0’; 之前先检查一下 n 是否大于0, 如果 n 不大于0, buf[n - 1] 就访问越界了, 所以要避免。

(4)BUGS, SEE ALSO,COLOPHON

在这里插入图片描述

写越界

  • BUGS部分说明了使用这些函数可能引起的Bug, 这部分一定要仔细看。 用 strcpy 比用 strncpy 更加不安全, 如果在调用 strcpy 之前不仔细检查 src 字符串的长度就有可能写越界, 这是一个很常见的错误。
  • 例如:
void foo(char *str)
{char buf[10];strcpy(buf, str);
...
}

段错误,缓冲区,缓冲区溢出overflow

  • str 所指向的字符串有可能超过10个字符而导致写越界, 在第 4 节 “段错误”我们看到过, 这种写越界可能当时不出错, 而在函数返回时出现段错误, 原因是写越界覆盖了保存在栈帧上的返回地址, 函数返回时跳转到非法地址, 因而出错
  • 像 buf 这种由调用者分配并传给函数读或写的一段内存通常称为缓冲区( Buffer) , 缓冲区写越界的错误称为缓冲区溢出( BufferOverflow) 。
  • 如果只是出现段错误那还不算严重, 更严重的是缓冲区溢出Bug经常被恶意用户利用, 使函数返回时跳转到一个事先设好的地址, 执行事先设好的指令, 如果设计得巧妙甚至可以启动一个Shell, 然后随心所欲执行任何命令, 可想而知, 如果一个用 root 权限执行的程序存在这样的Bug, 被攻陷了, 后果将很严重。

三、malloc与free

1.全局数组是无法定义成可变长数组VLA的

在这里插入图片描述

2.malloc可在进程的堆空间动态分配内存

(1)

  • 其实在第 5 节 “虚拟内存管理”提过, 进程有一个堆空间, C标准库函数 malloc 可以在堆空间动态分配内存, 它的底层通过 brk 系统调用向操作系统申请内存。
  • 动态分配的内存用完之后可以用 free 释放, 更准确地说是归还给 malloc , 这样下次调用 malloc 时这块内存可以再次被分配。

(2)

#include <stdlib.h>
void *malloc(size_t size);
返回值: 成功返回所分配内存空间的首地址, 出错返回NULL
void free(void *ptr);
  • malloc 的参数 size 表示要分配的字节数, 如果分配失败( 可能是由于系统内存耗尽) 则返回 NULL
  • 由于 malloc 函数不知道用户拿到这块内存要存放什么类型的数据, 所以返回通用指针 void * , 用户程序可以转换成其它类型的指针再访问这块内存。
  • malloc 函数保证它返回的指针所指向的地址满足系统的对齐要求, 例如在32位平台上返回的指针一定对齐到4字节边界, 以保证用户程序把它转换成任何类型的指针都能用。
  • 动态分配的内存用完之后可以用 free 释放掉, 传给 free 的参数正是先前 malloc 返回的内存块首地址。
  • 举例如下:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct {int number;char *msg;
} unit_t;int main(void)
{unit_t *p = malloc(sizeof(unit_t));if (p == NULL){printf("out of memory\n");exit(1);}p->number = 3;p->msg = malloc(20);strcpy(p->msg, "Hello world!");printf("number: %d\nmsg: %s\n", p->number, p->msg);free(p->msg);free(p);p = NULL;
return 0;
}

在这里插入图片描述

野指针

在这里插入图片描述

内存泄漏Memory Leak

  • 上面的例子只有一个简单的顺序控制流程, 分配内存, 赋值, 打印, 释放内存, 退出程序。这种情况下即使不用 free 释放内存也可以, 因为程序退出时整个进程地址空间都会释放, 包括堆空间, 该进程占用的所有内存都会归还给操作系统。
  • 但如果一个程序长年累月运行( 例如网络服务器程序) , 并且在循环或递归中调用 malloc 分配内存, 则必须有 free 与之配对, 分配一次就要释放一次, 否则每次循环都分配内存, 分配完了又不释放, 就会慢慢耗尽系统内存, 这种错误称为内存泄漏( Memory Leak) 。
  • 另外, malloc 返回的指针一定要保存好, 只有把它传给 free 才能释放这块内存, 如果这个指针丢失了, 就没有办法 free 这块内存了, 也会造成内存泄漏。
  • 例如:
void foo(void)
{char *p = malloc(10);...
}
  • foo 函数返回时要释放局部变量 p 的内存空间, 它所指向的内存地址就丢失了, 这10个字节也就没法释放了。
  • 内存泄漏的Bug很难找到, 因为它不会像访问越界一样导致程序运行错误,少量内存泄漏并不影响程序的正确运行, 大量的内存泄漏会使系统内存紧缺, 导致频繁换页, 不仅影响当前进程, 而且把整个系统都拖得很慢。

(3)malloc(0) 和ree(NULL)

在这里插入图片描述

(4) malloc 和 free 的简单实现:基于环形链表

  • 示如下, 目的是让读者理解 malloc 和 free 的工作原理。
  • libc 的实现比这要复杂得多, 但基本工作原理也是如此。
  • 读者只要理解了基本工作原理, 就很容易分析在使用 malloc 和 free 时遇到的各种Bug了。

在这里插入图片描述
在这里插入图片描述

  • 图中白色背景的框表示 malloc 管理的空闲内存块, 深色背景的框不归 malloc 管, 可能是已经分配给用户的内存块, 也可能不属于当前进程, Break之上的地址不属于当前进程, 需要通过 brk 系统调用向内核申请
  • 每个内存块开头都有一个头节点, 里面有一个指针字段和一个长度字段, 指针字段把所有空闲块的头节点串在一起, 组成一个环形链表, 长度字段记录着头节点和后面的内存块加起来一共有多长, 以8字节为单位( 也就是以头节点的长度为单位) 。

在这里插入图片描述
在这里插入图片描述

四、传入参数与传出参数

这篇关于(第24章)LinuxC本质中函数接口的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041563

相关文章

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

java线程深度解析(一)——java new 接口?匿名内部类给你答案

http://blog.csdn.net/daybreak1209/article/details/51305477 一、内部类 1、内部类初识 一般,一个类里主要包含类的方法和属性,但在Java中还提出在类中继续定义类(内部类)的概念。 内部类的定义:类的内部定义类 先来看一个实例 [html]  view plain copy pu

模拟实现vector中的常见接口

insert void insert(iterator pos, const T& x){if (_finish == _endofstorage){int n = pos - _start;size_t newcapacity = capacity() == 0 ? 2 : capacity() * 2;reserve(newcapacity);pos = _start + n;//防止迭代

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^