AVL树【C++实现】

2024-06-08 03:52
文章标签 c++ 实现 avl

本文主要是介绍AVL树【C++实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • AVL树的概念
    • AVL树节点的定义
    • AVL树的插入
    • AVL树的旋转
        • 新节点插入较高右子树的右侧---右右:左单旋
        • 新节点插入较高左子树的左侧---左左:右单旋
        • 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
        • 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
    • AVL树的验证
    • AVL树的查找
    • AVL树的修改
        • 修改函数一
        • 修改函数二
        • 重载[ ]
    • AVL树的删除
    • AVL树的性能

AVL树的概念

  • AVL树(英语:AVL tree)是计算机科学中最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是 𝑂(log𝑛)。增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡。AVL树得名于它的发明者格奥尔吉·阿杰尔松-韦利斯基和叶夫根尼·兰迪斯,他们在1962年的论文《An algorithm for the organization of information》中公开了这一数据结构。

  • 节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反)。带有平衡因子1、0或 -1的节点被认为是平衡的。带有平衡因子 -2或2的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树

  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    如:

  • 平衡因子 = 右子树-左子树

非AVL树:
在这里插入图片描述

  • 在平衡之后:

在这里插入图片描述

在这里插入图片描述

  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
    O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

AVL树节点的定义

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parnet;pair<K, V> _kv;int _bf; // balance factorAVLTreeNode(const pair<K, V> kv):_left(nullptr), _right(nullptr), _parnet(nullptr), kv(kv)_bf(0){}
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
    • 插入到父亲的左边,父亲平衡因子--
    • 插入到父亲的右边,父亲平衡因子++
    • 父亲 bf 平衡因子 == 0,父亲所在子树高度不变,不用继续往上更新,插入结束
    • 父亲 bf 平衡因子 == 1 或者 -1,父亲所在子树高度变了,必须往上更新
    • 父亲 bf 更新后 == 2 或者 -2 ,父亲所在的子树已经不平衡,需要旋转处理
  • 更新后不可能出现其他值,插入之前树是AVL树,平衡因子要么是1,-1,0,++,--,
bool Insert(const pair<K, V>& kv)
{if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}// 插入节点cur = new Node(kv);if (parent->_kv.first < kv.first)parent->_right = cur;elseparent->_left = cur;cur->_parnet = parent;// 更新平衡因子while (parent){if (cur == parent->_left)parent->_bf--;elseparent->_bf++;if (parent->_bf == 0) // 更新结束break;else if (parent->_bf == 1 || parent->_bf == -1){// 继续更新cur = parent;parent = parent->_parnet;}else if (parent->_bf == -2 || parent->_bf == 2){// 需要旋转// ...break;}else{assert(false);}}return true;
}

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
    • 当pSubR的平衡因子为1时,执行左单旋
    • 当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
    • 当pSubL的平衡因子为-1是,执行右单旋
    • 当pSubL的平衡因子为1时,执行左右双旋

在这里插入图片描述

  • 旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。
新节点插入较高右子树的右侧—右右:左单旋

在这里插入图片描述

左单旋的步骤如下:

  1. 让subR的左子树作为parent的右子树。
  2. 让parent作为subR的左子树。
  3. 让subR作为整个子树的根。
  4. 更新平衡因子。

在这里插入图片描述

//左单旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;Node* parentParent = parent->_parent;//1、建立subR和parent之间的关系parent->_parent = subR;subR->_left = parent;//2、建立parent和subRL之间的关系parent->_right = subRL;if (subRL)subRL->_parent = parent;//3、建立parentParent和subR之间的关系if (parentParent == nullptr){_root = subR;subR->_parent = nullptr; //subR的_parent指向需改变}else{if (parent == parentParent->_left){parentParent->_left = subR;}else //parent == parentParent->_right{parentParent->_right = subR;}subR->_parent = parentParent;}//4、更新平衡因子subR->_bf = parent->_bf = 0;
}
新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述

  • 上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
    子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
  • 如果是根节点,旋转完成后,要更新根节点
  • 如果是子树,可能是某个节点的左子树,也可能是右子树
    在这里插入图片描述

右单旋的步骤如下:

  1. 让subL的右子树作为parent的左子树。
  2. 让parent作为subL的右子树。
  3. 让subL作为整个子树的根。
  4. 更新平衡因子。
// 右单旋
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;Node* parentParent = parent->_parent;//1、建立subL和parent之间的关系subL->_right = parent;parent->_parent = subL;//2、建立parent和subLR之间的关系parent->_left = subLR;if (subLR)subLR->_parent = parent;//3、建立parentParent和subL之间的关系if (parentParent == nullptr){_root = subL;_root->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subL;}else //parent == parentParent->_right{parentParent->_right = subL;}subL->_parent = parentParent;}//4、更新平衡因子subL->_bf = parent->_bf = 0;
}
新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述

  • 将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

左右双旋的步骤如下:

  1. 以subL为旋转点进行左单旋。
  2. 以parent为旋转点进行右单旋。
  3. 更新平衡因子。
//左右双旋
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf; //subLR不可能为nullptr,因为subL的平衡因子是1//1、以subL为旋转点进行左单旋RotateL(subL);//2、以parent为旋转点进行右单旋RotateR(parent);//3、更新平衡因子if (bf == 1){subLR->_bf = 0;subL->_bf = -1;parent->_bf = 0;}else if (bf == -1){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 1;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false); //在旋转前树的平衡因子就有问题}
}
新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述

右左双旋的步骤如下:

  1. 以subR为旋转点进行右单旋。
  2. 以parent为旋转点进行左单旋。
  3. 更新平衡因子。
//右左双旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;//1、以subR为轴进行右单旋RotateR(subR);//2、以parent为轴进行左单旋RotateL(parent);//3、更新平衡因子if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else if (bf == 0){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 0;}else{assert(false); //在旋转前树的平衡因子就有问题}
}

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。
  2. 验证其为平衡树每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)节点的平衡因子是否计算正确。
//判断是否为AVL树
bool IsAVLTree()
{int hight = 0; //输出型参数return _IsBalanced(_root, hight);
}
//检测二叉树是否平衡
bool _IsBalanced(Node* root, int& hight)
{if (root == nullptr) //空树是平衡二叉树{hight = 0; //空树的高度为0return true;}//先判断左子树int leftHight = 0;if (_IsBalanced(root->_left, leftHight) == false)return false;//再判断右子树int rightHight = 0;if (_IsBalanced(root->_right, rightHight) == false)return false;//检查该结点的平衡因子if (rightHight - leftHight != root->_bf){cout << "平衡因子设置异常:" << root->_kv.first << endl;}//把左右子树的高度中的较大值+1作为当前树的高度返回给上一层hight = max(leftHight, rightHight) + 1;return abs(rightHight - leftHight) < 2; //平衡二叉树的条件
}

AVL树的查找

AVL树的查找函数与二叉搜索树的查找方式一模一样,逻辑如下:

  1. 若树为空树,则查找失败,返回nullptr。
  2. 若key值小于当前结点的值,则应该在该结点的左子树当中进行查找。
  3. 若key值大于当前结点的值,则应该在该结点的右子树当中进行查找。
  4. 若key值等于当前结点的值,则查找成功,返回对应结点。
//查找函数
Node* Find(const K& key)
{Node* cur = _root;while (cur){if (key < cur->_kv.first) //key值小于该结点的值{cur = cur->_left; //在该结点的左子树当中查找}else if (key > cur->_kv.first) //key值大于该结点的值{cur = cur->_right; //在该结点的右子树当中查找}else //找到了目标结点{return cur; //返回该结点}}return nullptr; //查找失败
}

AVL树的修改

修改函数一
//修改函数
bool Modify(const K& key, const V& value)
{Node* ret = Find(key);if (ret == nullptr) //未找到指定key值的结点{return false;}ret->_kv.second = value; //修改结点的valuereturn true;
}
修改函数二
  • 若待插入结点的键值key在map当中不存在,则结点插入成功,并返回插入后结点的指针和true。
  • 若待插入结点的键值key在map当中已经存在,则结点插入失败,并返回map当中键值为key的结点的指针和false。
//插入函数
pair<Node*, bool> Insert(const pair<K, V>& kv)
{if (_root == nullptr) //若AVL树为空树,则插入结点直接作为根结点{_root = new Node(kv);return make_pair(_root, true); //插入成功,返回新插入结点和true}//1、按照二叉搜索树的插入方法,找到待插入位置Node* cur = _root;Node* parent = nullptr;while (cur){if (kv.first < cur->_kv.first) //待插入结点的key值小于当前结点的key值{//往该结点的左子树走parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first) //待插入结点的key值大于当前结点的key值{//往该结点的右子树走parent = cur;cur = cur->_right;}else //待插入结点的key值等于当前结点的key值{//插入失败(不允许key值冗余)return make_pair(cur, false); //插入失败,返回已经存在的结点和false}}//2、将待插入结点插入到树中cur = new Node(kv); //根据所给值构造一个新结点Node* newnode = cur; //记录新插入的结点if (kv.first < parent->_kv.first) //新结点的key值小于parent的key值{//插入到parent的左边parent->_left = cur;cur->_parent = parent;}else //新结点的key值大于parent的key值{//插入到parent的右边parent->_right = cur;cur->_parent = parent;}//3、更新平衡因子,如果出现不平衡,则需要进行旋转while (cur != _root) //最坏一路更新到根结点{if (cur == parent->_left) //parent的左子树增高{parent->_bf--; //parent的平衡因子--}else if (cur == parent->_right) //parent的右子树增高{parent->_bf++; //parent的平衡因子++}//判断是否更新结束或需要进行旋转if (parent->_bf == 0) //更新结束(新增结点把parent左右子树矮的那一边增高了,此时左右高度一致){break; //parent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子}else if (parent->_bf == -1 || parent->_bf == 1) //需要继续往上更新平衡因子{//parent树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子cur = parent;parent = parent->_parent;}else if (parent->_bf == -2 || parent->_bf == 2) //需要进行旋转(此时parent树已经不平衡了){if (parent->_bf == -2){if (cur->_bf == -1){RotateR(parent); //右单旋}else //cur->_bf == 1{RotateLR(parent); //左右双旋}}else //parent->_bf == 2{if (cur->_bf == -1){RotateRL(parent); //右左双旋}else //cur->_bf == 1{RotateL(parent); //左单旋}}break; //旋转后就一定平衡了,无需继续往上更新平衡因子(旋转后树高度变为插入之前了)}else{assert(false); //在插入前树的平衡因子就有问题}}return make_pair(newnode, true); //插入成功,返回新插入结点和true
}
重载[ ]
  1. 调用插入函数插入键值对。
  2. 拿出从插入函数获取到的结点。
  3. 返回该结点value的引用。
  • 如果key不在树中,则先插入键值对<key, V()>,然后返回该键值对中value的引用。
  • 如果key已经在树中,则返回键值为key结点value的引用。
//operator[]重载
V& operator[](const K& key)
{//调用插入函数插入键值对pair<Node*, bool> ret = Insert(make_pair(key, V()));//拿出从插入函数获取到的结点Node* node = ret.first;//返回该结点value的引用return node->_kv.second;
}

AVL树的删除

  • 删除方法和二叉搜索树相同
  1. 先找到待删除的结点。
  2. 若找到的待删除结点的左右子树均不为空,则需要使用替换法进行删除。
//删除函数
bool Erase(const K& key)
{//用于遍历二叉树Node* parent = nullptr;Node* cur = _root;//用于标记实际的删除结点及其父结点Node* delParentPos = nullptr;Node* delPos = nullptr;while (cur){if (key < cur->_kv.first) //所给key值小于当前结点的key值{//往该结点的左子树走parent = cur;cur = cur->_left;}else if (key > cur->_kv.first) //所给key值大于当前结点的key值{//往该结点的右子树走parent = cur;cur = cur->_right;}else //找到了待删除结点{if (cur->_left == nullptr) //待删除结点的左子树为空{if (cur == _root) //待删除结点是根结点{_root = _root->_right; //让根结点的右子树作为新的根结点if (_root)_root->_parent = nullptr;delete cur; //删除原根结点return true; //根结点无祖先结点,无需进行平衡因子的更新操作}else{delParentPos = parent; //标记实际删除结点的父结点delPos = cur; //标记实际删除的结点}break; //删除结点有祖先结点,需更新平衡因子}else if (cur->_right == nullptr) //待删除结点的右子树为空{if (cur == _root) //待删除结点是根结点{_root = _root->_left; //让根结点的左子树作为新的根结点if (_root)_root->_parent = nullptr;delete cur; //删除原根结点return true; //根结点无祖先结点,无需进行平衡因子的更新操作}else{delParentPos = parent; //标记实际删除结点的父结点delPos = cur; //标记实际删除的结点}break; //删除结点有祖先结点,需更新平衡因子}else //待删除结点的左右子树均不为空{//替换法删除//寻找待删除结点右子树当中key值最小的结点作为实际删除结点Node* minParent = cur;Node* minRight = cur->_right;while (minRight->_left){minParent = minRight;minRight = minRight->_left;}cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的keycur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的valuedelParentPos = minParent; //标记实际删除结点的父结点delPos = minRight; //标记实际删除的结点break; //删除结点有祖先结点,需更新平衡因子}}}if (delParentPos == nullptr) //delParentPos没有被修改过,说明没有找到待删除结点{return false;}//记录待删除结点及其父结点(用于后续实际删除)Node* del = delPos;Node* delP = delParentPos;//更新平衡因子while (delPos != _root) //最坏一路更新到根结点{if (delPos == delParentPos->_left) //delParentPos的左子树高度降低{delParentPos->_bf++; //delParentPos的平衡因子++}else if (delPos == delParentPos->_right) //delParentPos的右子树高度降低{delParentPos->_bf--; //delParentPos的平衡因子--}//判断是否更新结束或需要进行旋转if (delParentPos->_bf == 0)//需要继续往上更新平衡因子{//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子delPos = delParentPos;delParentPos = delParentPos->_parent;}else if (delParentPos->_bf == -1 || delParentPos->_bf == 1) //更新结束{break; //delParent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子}else if (delParentPos->_bf == -2 || delParentPos->_bf == 2) //需要进行旋转(此时delParentPos树已经不平衡了){if (delParentPos->_bf == -2){if (delParentPos->_left->_bf == -1){Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点RotateR(delParentPos); //右单旋delParentPos = tmp; //更新根结点}else if(delParentPos->_left->_bf == 1){Node* tmp = delParentPos->_left->_right; //记录delParentPos左右旋转后新的根结点RotateLR(delParentPos); //左右双旋delParentPos = tmp; //更新根结点}else //delParentPos->_left->_bf == 0{Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点RotateR(delParentPos); //右单旋delParentPos = tmp; //更新根结点//平衡因子调整delParentPos->_bf = 1;delParentPos->_right->_bf = -1;break; //更正}}else //delParentPos->_bf == 2{if (delParentPos->_right->_bf == -1){Node* tmp = delParentPos->_right->_left; //记录delParentPos右左旋转后新的根结点RotateRL(delParentPos); //右左双旋delParentPos = tmp; //更新根结点}else if(delParentPos->_right->_bf == 1){Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点RotateL(delParentPos); //左单旋delParentPos = tmp; //更新根结点}else //delParentPos->_right->_bf == 0{Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点RotateL(delParentPos); //左单旋delParentPos = tmp; //更新根结点//平衡因子调整delParentPos->_bf = -1;delParentPos->_left->_bf = 1;break; //更正}}//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子delPos = delParentPos;delParentPos = delParentPos->_parent;//break; //error}else{assert(false); //在删除前树的平衡因子就有问题}}//进行实际删除if (del->_left == nullptr) //实际删除结点的左子树为空{if (del == delP->_left) //实际删除结点是其父结点的左孩子{delP->_left = del->_right;if (del->_right)del->_right->_parent = delP;}else //实际删除结点是其父结点的右孩子{delP->_right = del->_right;if (del->_right)del->_right->_parent = delP;}}else //实际删除结点的右子树为空{if (del == delP->_left) //实际删除结点是其父结点的左孩子{delP->_left = del->_left;if (del->_left)del->_left->_parent = delP;}else //实际删除结点是其父结点的右孩子{delP->_right = del->_left;if (del->_left)del->_left->_parent = delP;}}delete del; //实际删除结点return true;
}

AVL树的性能

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

这篇关于AVL树【C++实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1041140

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景