子网掩码换算和子网的划分详解

2024-06-08 03:38

本文主要是介绍子网掩码换算和子网的划分详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、子网掩码的换算:

  在一个网络里面的子网掩码换算,就以网络中有多少台主机数为例来计算。比如说一B类IP地址为172.16.0.0的网络划分成若干子网,要求每个子网内有主机数为500台,则该子网掩码的计算方法基本步骤如下:

  第一步,首先将子网中要求容纳的主机数“500”转换成二进制,得到100000100

  第二步,计算出该二进制的位数为10位,即n =10。

  第三步,将255.255.255.255先化成二进制 11111111.11111111.11111111.111111
11从后向前10位全部置“0”,得到二进制数“11111111.11111111.11111100.00000000
”,转换成十进制后即为255.255.252.0,这就是该要划分成主机数为500的B类IP地址 192.168.0.0的子网掩码。

二、子网的划分:

  经过在工作中的实践,对子网划分的步骤进行了归纳,可体现在如下两步几步:

  第一步,将要划分的子网数目转换为2的m次方。如在一个网吧里面要划4个子网,4=22。如果不是2的多少次方,则取大为原则,(子网个数与占用主机地址位数有如下等式成立:2m≥n。其中,m表示占用主机地址的位数;n表示划分的子网个数)如要划分子网为6个,则同样要考虑8=23。

  第二步,将上一步确定的幂m按高序占用主机地址m位后,转换为十进制。如m为2表示主机位中有2位被划为“网络标识号”占用,因网络标识号应全为“1”,所以主机号对应的字节段为“11000000”。转换成十进制后为192,这就最终确定的子网掩码。就以我们呢常用的C类网为例,则子网掩码为255.255.255.192。

  我们就以实际实例举例说明,若我们用的网络号为192.168.1,则该C类网内的主机IP地址就是192.168.1.1~192.168.1.254,现将网络划分为4个子网。按如上步骤操作:

  4=22,则表示要占用主机地址的2个高序位,即为11000000,可以确定该4个子网的子网掩码都为255.255.255.192。而4个子网的IP地址的划分可以根据被网络号占住的高两位排列进行的,排列的四种顺序为:00,01,10,11。所以这四个IP地址范围分别为:

  (1)第1个子网被网络号占住为00的IP地址是从“11000000 10101000 00000001 00000001”到“11000000 10101000 00000001 00111110”。因为主机号不能全为“0”和“1”(全0为网络本身,全1为广播位),所以没有11000000 00001001 11001000 00000000和11000000 00001001 11001000 00111111这两个IP地址(下同)。注意实际上此时的主机号只有最后面的6位。对应的十进制IP地址范围为192.168.1~192.168.62。而这个子网的网络地址为 11000000 00001001 11001000 00000000,为192.168.1.0。

  (2)第2个子网被网络号占住为01的IP地址是从“11000000 10101000 00000001 01000001”到“11000000 10101000 00000001 01111110” 。对应的十进制IP地址范围为192.168.1.65~192.168.1.126。对应这个子网的网络地址为 11000000 10101000 00000001 01000000,为192.168.1.64。 

  (3)第3个子网被网络号占住为10的IP地址是从“11000000 10101000 00000001 10000001”到“11000000 10101000 00000001 10111110”。对应的十进制IP地址范围为192.168.1.129~192.168.1.190。对应这个子网的网络地址为 11000000 10101000 00000001 10000000,为192.168.1.128。 

  (4)第4个子网被网络号占住为11的IP地址是从“11000000 10101000 00000001 11000001”到“11000000 10101000 00000001 11111110”。对应的十进制IP地址范围为192.168.1.193~192.168.1.254。对应这个子网的网络地址为 11000000 10101000 00000001 11000000,为192.168.1.192。

  三、在网吧里面要保证每个划到的子网里面能给超过254台以上主机以IP就需要把子网掩码位的最后的(11111111 11111111 11111111 00000000 )8位都分给主机位,这样就需要在第三个8位(11111111 11111111 00000000 00000000 )上面来进行划分,而子网掩码的获得可以根据第一部分的方法获得。

  下面以一家1000台的网吧做实例举例说明。1000台机器打算分成4个子网,每个子网250台机器。我们以B类IP地址为172.16.0.0的网络划分四个子网,按照上面的子网划分步骤:

  第一步:4=22,则表示要占用主机地址的是2位,因是B类IP的后8位都分给主机做主机IP,所以就需要把占2位的子网掩码位向前移也就是在第三个8位的后两位上,既可以确定该四个子网的子网掩码为255.255.255.0(根据第一部分所说到的计算子网掩码的位数的方式算出。) 

  第二步: 4个子网的IP地址的划分可以根据被网络号占住的第三个8位的后两位排列进行,排列的四种顺序为:00,01,10,11。所以这四个IP地址范围分别为: 

  (1)第1个子网被网络号占住为00的IP地址是从“10101100 00010000 00000000 00000000”到“10101100 00010000 00000000 00000000”。 同理:因为主机号不能全为“0”和“1”(全0为网络本身,全1为广播位),所以没有10101100 00010000 00000000 00000000和10101100 00010000 00000000 11111111这两个IP地址(下同)。主机号占最后面的8位。对应的十进制IP地址范围为172.16.0.1~172.16.0.254。而这个子网的网络地址为10101100 00010000 00000000 00000000,为172.16.0.0。

  (2)第2个子网被网络号占住为00的IP地址是从“10101100 00010000 00000001 00000000”到“10101100 00010000 00000001 00000000”。 对应的十进制IP地址范围为172.16.1.1~172.16.1.254。而这个子网的网络地址为10101100 00010000 00000001 00000000,为172.16.1.0。 

  (3)第3个子网被网络号占住为00的IP地址是从“10101100 00010000 00000010 00000000”到“10101100 00010000 00000010 00000000” 。对应的十进制IP地址范围为172.16.2.1~172.16.254。而这个子网的网络地址为10101100 00010000 00000010 00000000,为172.16.2.0。 

  (4)第4个子网被网络号占住为00的IP地址是从“10101100 00010000 00000011 00000000”到“10101100 00010000 00000011 00000000” 。对应的十进制IP地址范围为172.16.3.1~172.16.3.254。而这个子网的网络地址为10101100 00010000 00000011 00000000,为172.16.3.0。 

  (注:作为B类地址来讲,在第三个8位上面可以根据所取的几位可以一共划分256个子网,实际的划分过程中要重点考虑一个网段中所存在的主机台数,以此先计算子网掩码,再以子网掩码全为1的右边往左边根据子网要占的子网掩码位划分子网。)

附:在此列出A、B、C三类网络子网数目与子网掩码的转换表,以供参考。

A类:

子网数目占用位数子网掩码子网中主机数
21255.128.0.08,388,606
42255.192.0.04,194,302
83255.224.0.02,097,150
164255.240.0.01,048,574
325255.248.0.0524,286
646255.252.0.0262,142
1287255.254.0.0131,070
2568255.255.0.065,534

 

B类:

子网数目占用位数子网掩码子网中主机数
21255.255.128.032,766
42255.255.192.016,382
83255.255.224.08,190
164255.255.240.04,094
325255.255.248.02,046
646255.255.252.01,022
1287255.255.254.0510
2568255.255.255.0254

 

C类:

子网数目占用位数子网掩码子网中主机数
21255.255.255.128126
42255.255.255.19262
83255.255.255.22430
164255.255.255.24014
325255.255.255.2486
646255.255.255.2522

这篇关于子网掩码换算和子网的划分详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1041117

相关文章

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化