莫凡Pytorch学习笔记(五)

2024-06-07 23:58
文章标签 学习 笔记 pytorch 莫凡

本文主要是介绍莫凡Pytorch学习笔记(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch模型保存与提取

本篇笔记主要对应于莫凡Pytorch中的3.4节。主要讲了如何使用Pytorch保存和提取我们的神经网络。

我们将通过两种方式展示模型的保存和提取。
第一种保存方式是保存整个模型,在重新提取时直接加载整个模型。第二种保存方法是只保存模型的参数,这种方式只保存了参数,而不会保存模型的结构等信息。

两种方式各有优缺点。保存完整模型不需要知道网络的结构,一次性保存一次性读入。缺点是模型比较大时耗时较长,保存的文件也大。而只保存参数的方式存储快捷,保存的文件也小一些,但缺点是丢失了网络的结构信息,恢复模型时需要提前建立一个特定结构的网络再读入参数。

以下使用代码展示。

数据生成与展示

import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt

这里还是生成一组带有噪声的 y = x 2 y=x^{2} y=x2数据进行回归拟合。

# torch.manual_seed(1)    # reproducible# fake data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)

基本网络搭建与保存

我们使用nn.Sequential模块来快速搭建一个网络完成回归操作。这里使用两种方式进行保存。

def save():# save net1net1 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1))optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)loss_func = torch.nn.MSELoss()for step in range(100):prediction = net1(x)loss = loss_func(prediction, y)optimizer.zero_grad()loss.backward()optimizer.step()# plot resultplt.figure(1, figsize=(10, 3))plt.subplot(131)plt.title('Net1')plt.scatter(x.data.numpy(), y.data.numpy())plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)plt.savefig("./img/05_save.png")torch.save(net1, 'net.pkl')                        # entire networktorch.save(net1.state_dict(), 'net_params.pkl')    # parameters

在这个save函数中,我们首先使用nn.Sequential模块构建了一个基础的二层神经网络。然后对其进行训练。展示训练结果。之后使用两种方式进行保存。

第一种方式直接保存整个网络,代码为

torch.save(net1, 'net.pkl')                        # entire network

第二种方式只保存网络参数,代码为

torch.save(net1.state_dict(), 'net_params.pkl')    # parameters

对保存的模型进行提取恢复

这里我们为两种不同存储方式保存的模型分别定义恢复提取的函数
首先是对整个网络的提取。直接使用torch.load就可以。

def restore_net():# 提取神经网络net2 = torch.load('net.pkl')prediction = net2(x)# plot resultplt.subplot(132)plt.title('Net2')plt.scatter(x.data.numpy(), y.data.numpy())plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)plt.savefig("./img/05_res_net.png")

而对于参数的读取,我们首先需要先搭建好一个与之前保存的模型相同架构的网络。然后使用这个网络的load_state_dict方法进行参数读取和恢复。

def restore_params():# 提取神经网络net3 = torch.nn.Sequential(torch.nn.Linear(1, 10),torch.nn.ReLU(),torch.nn.Linear(10, 1))net3.load_state_dict(torch.load('net_params.pkl'))prediction = net3(x)# plot resultplt.subplot(133)plt.title('Net3')plt.scatter(x.data.numpy(), y.data.numpy())plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)plt.savefig("./img/05_res_para.png")plt.show()

对比不同提取方法的效果

接下来我们对比一下这两种方法的提取效果

# save net1
save()# restore entire net (may slow)
restore_net()# restore only the net parameters
restore_params()

最后,得到的展示输出如下:
save
这里Net1即我们训练好的网络,我们使用两种方式保存了Net1。使用第一种方式存储和提取的结果为Net2,使用第二种方式存储和提取的结果为Net3。通过对比可以看出,这三个网络一模一样,证明不同的存储提取方式的效果是相同的,不会有差异。

参考

  1. 莫凡Python:Pytorch动态神经网络,https://mofanpy.com/tutorials/machine-learning/torch/

这篇关于莫凡Pytorch学习笔记(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040666

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件