Netty中的ByteBuf使用介绍

2024-06-07 22:36
文章标签 使用 介绍 netty bytebuf

本文主要是介绍Netty中的ByteBuf使用介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ByteBuf有三类:

  • 堆缓存区:JVM堆内存分配
  • 直接缓冲区:有计算机内存分配,JVM只是保留分配内存的地址信息,相对于堆内存方式较为昂贵;
  • 复合缓冲区:复合缓冲区CompositeByteBuf,它为多个ByteBuf 提供一个聚合视图。比如HTTP 协议,分为消息头和消息体,这两部分可能由应用程序的不同模块产生,各有各的 ByteBuf,将会在消息被发送的时候组装为一个ByteBuf,此时可以将这两个ByteBuf聚 合为一个CompositeByteBuf,然后使用统一和通用的ByteBuf API来操作;

ByteBufAllocator

当在需要ByteBuf时,用这个类进行获取,它提供了3中类型的ByteBuf获取。

    // 返回一个基于堆或直接内存的ByteBuf
ByteBuf buffer();ByteBuf buffer(int initialCapacity);ByteBuf buffer(int initialCapacity, int maxCapacity);
// 返回一个适用于IO操作的ByteBufByteBuf ioBuffer();ByteBuf ioBuffer(int initialCapacity);ByteBuf ioBuffer(int initialCapacity, int maxCapacity);
// 返回一个基于堆内存的ByteBufByteBuf heapBuffer();ByteBuf heapBuffer(int initialCapacity);ByteBuf heapBuffer(int initialCapacity, int maxCapacity);
// 返回一个基于直接内存的ByteBufByteBuf directBuffer();ByteBuf directBuffer(int initialCapacity);ByteBuf directBuffer(int initialCapacity, int maxCapacity);
// 返回一个包含指定数量的ByteBuf的复合ByteBufCompositeByteBuf compositeBuffer();CompositeByteBuf compositeBuffer(int maxNumComponents);
// 返回一个包含指定数量的堆内存ByteBuf的负荷ByteBufCompositeByteBuf compositeHeapBuffer();CompositeByteBuf compositeHeapBuffer(int maxNumComponents);
// 返回一个包含指定数量的直接内存ByteBuf的负荷ByteBufCompositeByteBuf compositeDirectBuffer();CompositeByteBuf compositeDirectBuffer(int maxNumComponents);
// 判断是否池化的直接内存对象boolean isDirectBufferPooled();
// 根据最小和最大容量计算出一个新的容量int calculateNewCapacity(int minNewCapacity, int maxCapacity);

netty中使用方式例如下面再入站里的handler调用:

    protected void channelRead0(ChannelHandlerContext channelHandlerContext, ByteBuf byteBuf) throws Exception {System.out.println("客户端收到:" + byteBuf.toString(CharsetUtil.UTF_8));ByteBuf bb = channelHandlerContext.alloc().heapBuffer();ByteBuf db = channelHandlerContext.alloc().directBuffer();channelHandlerContext.channel();}

它由上下文对象ChannelHandlerContext调用alloc()方法获取ByteBufAllocator

API

我们先看下下面这几个API,需要熟悉理解的:

// 返回一个ByteBufAllocator,创建ByteBuf使用
public abstract ByteBufAllocator alloc();
// 返回可以被读取的字节的开始索引public abstract int readerIndex();
public abstract ByteBuf readerIndex(int readerIndex);
// 返回可被写入字节的开始索引public abstract int writerIndex();public abstract ByteBuf writerIndex(int writerIndex);
// 可被读取的字节数public abstract int readableBytes();
// 可被写入的字节数public abstract int writableBytes();
// 是否可读public abstract boolean isReadable();
// 是否可读,参数是是否可读入指定字节数public abstract boolean isReadable(int size);
// 是否可写public abstract boolean isWritable();
// 是否可写,参数是是否可读入指定字节数public abstract boolean isWritable(int size);
// 清空数据public abstract ByteBuf clear();
// 标记当前的可被读取的开始索引public abstract ByteBuf markReaderIndex();
// 重置可被读取的索引,就是重置为标记的索引,或是0public abstract ByteBuf resetReaderIndex();
// 标记可被写入的开始索引public abstract ByteBuf markWriterIndex();
// 重置可被写入的索引,就是重置为标记的索引,或是0public abstract ByteBuf resetWriterIndex();
// 丢弃读取过的字节(0到readerIndex的部分)public abstract ByteBuf discardReadBytes();

虽然上面注释有写过,但还是再提醒一遍;

readerIndex表示可以被读取数据的开始索引,或者说已经读取了readerIndex个字节;
writerIndex表示可以被写入数据的开始索引,或者说已经写入了writerIndex个字节;

discardReadBytes丢弃的是读取过的字节数据,同时writerIndex会相应减少对应的字节长度;

看几个例子,再次加深记忆:

 ByteBuf byteBuf = new PooledByteBufAllocator().buffer();System.out.println("--------------测试get/set 与 read/write方法的区别");byteBuf.setBytes(0, "qwer".getBytes());System.out.println("数据:" + byteBuf.toString(CharsetUtil.UTF_8));System.out.println("set 之后 readIndex:" + byteBuf.readerIndex());System.out.println("set 之后 wirteIndex:" + byteBuf.writerIndex());System.out.println("get 之后 readIndex:" + byteBuf.readerIndex());System.out.println("get 之后 wirteIndex:" + byteBuf.writerIndex());// 没有数据被写进去System.out.println(byteBuf.toString(CharsetUtil.UTF_8));// 写入12个字节数据,writerIndex=12byteBuf.writeBytes("天气不错".getBytes(CharsetUtil.UTF_8));System.out.println("数据:" + byteBuf.toString(CharsetUtil.UTF_8));// 没有读取,readerIndex=0System.out.println("write 之后 readIndex:" + byteBuf.readerIndex());System.out.println("write 之后 wirteIndex:" + byteBuf.writerIndex());// get方式获取字节,readerIndex不会移动byteBuf.getByte(3);System.out.println("get 之后 readIndex:" + byteBuf.readerIndex());System.out.println("get 之后 wirteIndex:" + byteBuf.writerIndex());// read方式读取,readerIndex=3,没有涉及写入,writerIndex不变byteBuf.readBytes(3);System.out.println("read 之后 readIndex:" + byteBuf.readerIndex());System.out.println("read 之后 wirteIndex:" + byteBuf.writerIndex());// 因为读取了3个字节(一个汉字),可被读取的数据从第二个汉字开始System.out.println("数据:" + byteBuf.toString(CharsetUtil.UTF_8));// 容量256System.out.println("容量:" + byteBuf.capacity());// 将数据的第6个索引开始替换为指定的字节数据,注意,这个长度要在指定索引和writerIndex差值内,不然会报异常(因为没有数据可以被操作)byteBuf.setBytes(6, "123".getBytes());System.out.println("setBytes 之后:" + byteBuf.toString(CharsetUtil.UTF_8));System.out.println("-------------测试byteBuf其他的一些方法");System.out.println("readableBytes 可被读取的字节数:" + byteBuf.readableBytes());System.out.println("writableBytes 可被写入的字节数:" + byteBuf.writableBytes());System.out.println("isReadable 是否可读:" + byteBuf.isReadable());System.out.println("isWritable 是否可写:" + byteBuf.isWritable());System.out.println("-----------测试标记与重置");// 重置也就是readerIndex=writerIndex=0byteBuf.resetReaderIndex();byteBuf.resetWriterIndex();System.out.println("reset 之后 readIndex:" + byteBuf.readerIndex());System.out.println("reset 之后 wirteIndex:" + byteBuf.writerIndex());// 重新写入数据,测试后面的方法byteBuf.writeBytes("天气真好".getBytes(CharsetUtil.UTF_8));// 再次读取3个字节byteBuf.readBytes(3);// 标记当前的readerIndexbyteBuf.markReaderIndex();// 标记当前的writerIndexbyteBuf.markWriterIndex();// 重置,只会重置为上一次mark的索引byteBuf.resetReaderIndex();byteBuf.resetWriterIndex();System.out.println("mark-reset 之后 readIndex:" + byteBuf.readerIndex());System.out.println("mark-reset 之后 wirteIndex:" + byteBuf.writerIndex());System.out.println("-------------测试丢弃");// 丢弃数据,释放内存,原来是写入了12个字节,writerIndex=12,执行丢弃,会把已经读取的丢弃(3个字节)// 所以,执行后的writerIndex=9,readerIndex=0byteBuf.discardReadBytes();System.out.println("容量:" + byteBuf.capacity());System.out.println("丢弃 之后 readIndex:" + byteBuf.readerIndex());System.out.println("丢弃 之后 wirteIndex:" + byteBuf.writerIndex());

结果如下:

image-20240528001333652

对于上面的操作,可以看下面这个图解:

image-20240528002756774

资源的释放

资源释放针对的主要是ByteBuf这个对象;

为什么说要释放ByteBuf这个对象,这个对象不是在方法中被创建的吗,方法结束后不就会被JVM回收吗?

如果说ByteBuf是一般对象的话,这个说法是对的,可是,这个对象ByteBufnetty实现的,并且实现于ReferenceCounted,而这个接口是用于引用计数管理对象生命周期的,需要我们手动进行计数管理;

我们看下这个接口提供的方法,对这个管理便会更加清晰:

public interface ReferenceCounted {/*** 返回对象的引用计数; 如果计数=0,表示对象不被引用可以被安全回收*/int refCnt();/*** 引用计数+1*/ReferenceCounted retain();/*** 引用计数+increment(增加指定的计数)*/ReferenceCounted retain(int increment);/*** 记录当前的访问位置;* 如果发生内存泄漏,返由 ResourceLeakDetector(资源泄漏探测器)返回这些信息*/ReferenceCounted touch();/*** 记录当前的访问位置,以及额外的信息*/ReferenceCounted touch(Object hint);/*** 引用次数-1;释放当前资源*/boolean release();/*** 引用次数-decrement(减少指定计数)*/boolean release(int decrement);
}

那为什么netty要实现这么一个需要手动释放的对象?

主要几点:

  • 优化内存管理:ByteBuf支持池化(Pooled),可以重用之前分配,但已回收的内存块,减少内存分配和垃圾回收的开销;非池化(Unpooled)每次使用时都要创建对象实例,分配内存,相对于池化对象,它过于频繁的分配内存和释放操作;
  • 引用计数机制/性能提升:更精准的控制对象的生命周期,在JVM中,利用各种算法,如标记清除、标记整理、复制等算法决定哪些对象可以被回收,并且在某些场景下,如一个方法中的创建并且被使用的变量,需要在变量离开作用域或方法执行完,也或是被明确复制为null时,才能被判定为无引用,而ByteBuf可以决定什么时候不被引用,做到在需要时及时回收,提高系统整体性能和响应能力;
  • 诊断内存泄漏:netty提供了ResourceLeakDetector类来跟踪ByteBuf的分配,在检测到内存泄漏时打印相关日志信息;

有人会问:netty这个框架不就是为了方便于开发,对socket进行封装,对业务流程步骤进行抽象,它就不能做到自动释放?

哎,netty确实对ByteBuf做了自动释放,只是ByteBufhandler之间流转时,这个经过业务处理,可能已经不是原来的ByteBuf,这个过程中可能创建了新的ByteBuf,而旧的ByteBuf就需要我们手动释放;

piple中有一个handler链,我们可以自由添加handler,但是头尾handler都是默认添加的,我们来看下面代码:

image-20240526210421409

这部分是piple实例化时执行的,它默认会添加TailContextHeadContext两个handler,尾部的handler就负责释放ByteBuf对象,也就是在这个handler链中,除了我们自己添加的handler,还有两个handler分别在头部和尾部,而尾部的handler其中一个功能就是释放handler链中传递的ByteBuf对象。

位置:io.netty.channel.DefaultChannelPipeline.TailContext#channelRead

image-20240526212947226

image-20240526213015187

可以看到ReferenceCountUtil.release(msg);的,这里就是释放对象的地方;

ReferenceCountUtil这个是netty自己封装的用于处理实现了引用计数接口对象的工具类。

这篇关于Netty中的ByteBuf使用介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1040486

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3