本文主要是介绍caffe 学习笔记之caffe.proto注释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
caffe.proto文件位置为./src/proto/caffe.proto
caffe.proto注释转自caffe.proto注释上下并加以修改
syntax = "proto2";package caffe;
// repeated required optional
// 可重复,类似数组 必要的 可选的
// Specifies the shape (dimensions) of a Blob.
// n*c*w*h
message BlobShape {repeated int64 dim = 1 [packed = true];
}message BlobProto {optional BlobShape shape = 7; //下文中替代4D描述符的结构repeated float data = 5 [packed = true];repeated float diff = 6 [packed = true];repeated double double_data = 8 [packed = true];repeated double double_diff = 9 [packed = true];// 4D dimensions -- deprecated. Use "shape" instead.// 4维的描述方式舍弃掉,改用"BlobShape"结构替代optional int32 num = 1 [default = 0];optional int32 channels = 2 [default = 0];optional int32 height = 3 [default = 0];optional int32 width = 4 [default = 0];
}// The BlobProtoVector is simply a way to pass multiple blobproto instances
// around.
message BlobProtoVector {repeated BlobProto blobs = 1;
}//图像数据结构
message Datum {optional int32 channels = 1;optional int32 height = 2;optional int32 width = 3;// the actual image data, in bytes//实际上以字节存储图像内容optional bytes data = 4;optional int32 label = 5;// Optionally, the datum could also hold float data.repeated float float_data = 6;// If true data contains an encoded image that need to be decodedoptional bool encoded = 7 [default = false];
}message FillerParameter {// The filler type.optional string type = 1 [default = 'constant'];optional float value = 2 [default = 0]; // the value in constant filleroptional float min = 3 [default = 0]; // the min value in uniform filleroptional float max = 4 [default = 1]; // the max value in uniform filleroptional float mean = 5 [default = 0]; // the mean value in Gaussian filleroptional float std = 6 [default = 1]; // the std value in Gaussian filler// The expected number of non-zero output weights for a given input in// Gaussian filler -- the default -1 means don't perform sparsification.//非零的输出值以高斯滤波系数值的方式填充//默认值为-1,不进行稀疏化optional int32 sparse = 7 [default = -1];// Normalize the filler variance by fan_in, fan_out, or their average.// Applies to 'xavier' and 'msra' fillers.//Protocol Buffer中的枚举和C++中类似enum VarianceNorm { FAN_IN = 0; FAN_OUT = 1; AVERAGE = 2;}optional VarianceNorm variance_norm = 8 [default = FAN_IN];
}//网络参数
message NetParameter {optional string name = 1; // consider giving the network a name// The input blobs to the network.repeated string input = 3;// The shape of the input blobs.repeated BlobShape input_shape = 8;// 4D input dimensions -- deprecated. Use "shape" instead.// If specified, for each input blob there should be four// values specifying thenum, channels, height and width of the input blob.// Thus, there should be a total of (4 * #input) numbers.repeated int32 input_dim = 4;// Whether the network will force every layer to carry out backward operation.// If set False, then whether to carry out backward is determined// automatically according to the net structure and learning rates.//网络是否会迫使每一层都进行反向操作。//如果设置为False,则根据网络结构和学习速率自动确定是否执行反向传播操作。optional bool force_backward = 5 [default = false];// The current "state" of the network, including the phase, level, and stage.//当前的网络状态有phase,level,stage三种状态。// Some layers may be included/excluded depending on this state and the states// specified in the layers' include and exclude fields.//根据此状态和图层的包含和非包含字段中指定的状态,可以包括/排除某些网络层。optional NetState state = 6;// Print debugging information about results while running Net::Forward,// Net::Backward, and Net::Update.//当运行前向网络,后向网络,更新网络的时候打印调试信息,默认不打印optional bool debug_info = 7 [default = false];// The layers that make up the net. Each of their configurations, including// connectivity and behavior, is specified as a LayerParameter.//很多层就构成了网络模型.连接和行为等配置参数构成了层参数.最后打印出来repeated LayerParameter layer = 100; // ID 100 so layers are printed last.// DEPRECATED: use 'layer' instead.//此后改用'layer'结构repeated V1LayerParameter layers = 2;
}// NOTE
// Update the next available ID when you add a new SolverParameter field.
//注意
//当你添加新的求解器参数对象时,更新了新的可用ID ,为 ID 41 type
//
// SolverParameter next available ID: 41 (last added: type)
//求解器参数
message SolverParameter {//// Specifying the train and test networks//// Exactly one train net must be specified using one of the following fields:// train_net_param, train_net, net_param, net// One or moretest nets may be specified using any of the following fields:// test_net_param, test_net, net_param, net// If more than one test net field is specified (e.g., both net and// test_net are specified), they will be evaluated in the field order given// above: (1) test_net_param, (2) test_net, (3) net_param/net.//如果指定了多个测试网络字段(例如,指定了net和test_net),则将以上面给出的字段顺序对它们求值://(1)test_net_param,(2)test_net,(3)net_param / net。// A test_iter must be specified for each test_net.// 必须为每个test_net 指定 test_iter// A test_level and/or a test_stage may also be specified for each test_net.// 还可以为每个test_net指定test_level和/或test_stage//// Proto filename for the train net, possibly combined with one or more// test nets.//对于训练网络的原型文件名可能由一个或者多个训练网络组成。optional string net = 24;// Inline train net param, possibly combined with one or more test nets.// 内联训练网络参数可能含有一个或者多个测试网络optional NetParameter net_param = 25;optional string train_net = 1; // Proto filename for the train net.repeated string test_net = 2; // Proto filenames for the test nets.optional NetParameter train_net_param = 21; // Inline train net params.repeated NetParameter test_net_param = 22; // Inline test net params.// The states for the train/test nets. Must be unspecified or// specified once per net.//要么确定,要么不确定,一旦确定,要么全是测试网络要么全是训练网络//// By default, all states will have solver = true;// train_state will have phase = TRAIN,// and all test_state's will have phase = TEST.// Other defaults are set according to the NetState defaults.//默认的,所有求解器的状态为真.训练网络 phase = TRAIN,测试网络phase = TEST,//其他情况有网络状态的默认值决定optional NetState train_state = 26;repeated NetState test_state = 27;// The number of iterations for each test net.repeated int32 test_iter = 3;// The number of iterations between two testing phases.// 两个测试阶段之间的迭代次数。optional int32 test_interval = 4 [default = 0];optional bool test_compute_loss = 19 [default = false];// If true, run an initial test pass before the first iteration,// ensuring memory availability and printing the starting value of the loss.// 若为真,在执行第一次迭代之前,先得运行初始化测试通过来确保有足够存储资源和打印初始值的loss信息optional bool test_initialization = 32 [default = true];optional float base_lr = 5; // The base learning rate //基准学习率// the number of iterations between displaying info. If display = 0, no info// will be displayed.// 显示迭代之间显示信息,如果display = 0,则没有信息显示optional int32 display = 6;// Display the loss averaged over the last average_loss iterations// 显示上次average_loss迭代的平均损失optional int32 average_loss = 33 [default = 1];optional int32 max_iter = 7; // the maximum number of iterations// accumulate gradients over `iter_size` x `batch_size` instancesoptional int32 iter_size = 36 [default = 1];// The learning rate decay policy. The currently implemented learning rate// policies are as follows:// - fixed: always returnbase_lr.// - step: returnbase_lr *gamma ^ (floor(iter / step))// - exp: returnbase_lr *gamma ^ iter// - inv: returnbase_lr * (1 +gamma * iter) ^ (- power)// - multistep: similar to step but it allows non uniform steps defined by// stepvalue// - poly: the effective learning rate follows a polynomial decay, to be// zero by the max_iter. returnbase_lr (1 -iter/max_iter) ^ (power)// - sigmoid: the effective learning rate follows a sigmod decay// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))//// where base_lr, max_iter, gamma, step, stepvalue and power are defined// in the solver parameter protocol buffer, and iter is the current iteration.optional string lr_policy = 8;optional float gamma = 9; // The parameter to compute the learning rate.optional float power = 10; // The parameter to compute the learning rate.optional float momentum = 11; // The momentum value. //动量值optional float weight_decay = 12; // The weight decay. //权重衰减// regularization types supported: L1 and L2// controlled by weight_decay//正则化方式支持:L1 和 L2//由权值衰减变量控制optional string regularization_type = 29 [default = "L2"]; //默认正则化方式为L2// the stepsize for learning rate policy "step"optional int32 stepsize = 13;// the stepsize for learning rate policy "multistep"repeated int32 stepvalue = 34;// Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm,// whenever their actual L2 norm is larger.// 设置clip_gradients大于零,只要它比实际的L2范数大,那么它就等于L2范数 optional float clip_gradients = 35 [default = -1];optional int32 snapshot = 14 [default = 0]; // The snapshot interval //snapshot:快照optional string snapshot_prefix = 15; // The prefix for the snapshot. //prefix:字首// whether to snapshot diff in the results or not. Snapshotting diff will help// debugging but the final protocol buffer size will be much larger.// 无论快照在结果中有无差值,快照的差值将会有助于调试,但是最终的protocol buffer的尺寸会大很多//optional bool snapshot_diff = 16 [default = false];enum SnapshotFormat {HDF5 = 0; BINARYPROTO = 1;}optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO];// the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.enum SolverMode { CPU = 0; GPU = 1;}optional SolverMode solver_mode = 17 [default = GPU];// the device_id will that be used in GPU mode. Use device_id = 0 in default.optional int32 device_id = 18 [default = 0];// If non-negative, the seed with which the Solver will initialize the Caffe// random number generator -- useful for reproducible results. Otherwise,// (and by default) initialize using a seed derived from the system clock.optional int64 random_seed = 20 [default = -1];// type of the solver//求解器的类型 默认类型为SGDoptional string type = 40 [default = "SGD"]; //string 类型// numerical stability for RMSProp, AdaGrad and AdaDelta and Adam// 对于RMSProp, AdaGrad and AdaDelta and Adam的数值稳定性默认阈值为 1e-8optional float delta = 31 [default = 1e-8];// parameters for the Adam solver// 自适应动量求解器的衰减的默认取值为0.999optional float momentum2 = 39 [default = 0.999];// RMSProp decay value// RMSProp的衰减值// MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)// 均方差的迭代求解关系// MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)optional float rms_decay = 38;// If true, print information about the state of the net that may help with// debugging learning problems.// 是否打印调试信息,默认设置为否optional bool debug_info = 23 [default = false];// If false, don't save a snapshot after training finishes.//如何设置为否,则不保存每次训练结束后的快照optional bool snapshot_after_train = 28 [default = true];// DEPRECATED: old solver enum types, use string instead//舍弃旧的求解器枚举类型,使用string代替enum SolverType { SGD = 0; NESTEROV = 1; ADAGRAD = 2; RMSPROP = 3; ADADELTA = 4; ADAM = 5;}// DEPRECATED: use type instead of solver_type// 舍弃solver_type, 改用 typeoptional SolverType solver_type = 30 [default = SGD];
}// A message that stores the solver snapshots
message SolverState {optional int32 iter = 1; // The current iteration //当前迭代optional string learned_net = 2; // The file that stores the learned net. //保存学习网络的文件repeated BlobProto history = 3; // The history for sgd solvers //sgd求解器的历史记录optional int32 current_step = 4 [default = 0]; // The current step for learning rate //当前学习率的步进
}//状态枚举:训练或者测试
enum Phase { TRAIN = 0; TEST = 1;
}//网络状态
message NetState {optional Phase phase = 1 [default = TEST];optional int32 level = 2 [default = 0];repeated string stage = 3;
}//Rule网络状态
message NetStateRule {// Set phase to require the NetState have a particular phase (TRAIN or TEST)// to meet this rule.optional Phase phase = 1;// Set the minimum and/or maximum levels in which the layer should be used.// Leave undefined to meet the rule regardless of level.//设置Rule层需使用的最大与/或最小层,其他未定义的层需满足rule规则。optional int32 min_level = 2;optional int32 max_level = 3;// Customizable sets of stages to include or exclude.//包含或排除用户自定义集的状态// The net must have ALL of the specified stages and NONE of the specified// "not_stage"s to meet the rule.//网络必须含有所有具体的状态,使用多层网络Rlue用于连接特定状态// (Use multiple NetStateRules to specify conjunctions of stages.)repeated string stage = 4;repeated string not_stage = 5;
}// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
// 指定训练参数(多层网络的全局学习常数,以及用于权重分配的名称和其他设置)。
message ParamSpec {// The names of the parameter blobs -- useful for sharing parameters among// layers, but never required otherwise. To share a parameter between two// layers, give it a (non-empty) name.// blobs参数的名称-用于在图层之间共享参数,但从不需要。为了共享一个参数给两层网络,给它一个名字optional string name = 1;// Whether to require shared weights to have the same shape, or just the same// count -- defaults to STRICT if unspecified.// 无论是为了相同的shape而共享权值,或者仅仅只是计数。默认情况下如果未指定则为STRICT(限制)// optional DimCheckMode share_mode = 2;enum DimCheckMode {// STRICT (default) requires thatnum, channels, height, width each match.//STRICT 限制 (默认)num, channels, height, width为shape的四个参数,对应一一匹配 STRICT = 0;// PERMISSIVE requires only the count (num*channels*height*width) to match.// PERMISSIVE 允许 仅需要num*channels*height*width的数相同即可 PERMISSIVE = 1;}// The multiplier on the global learning rate for this parameter.//该参数在全局上的学习率的乘数optional float lr_mult = 3 [default = 1.0];// The multiplier on the global weight decay for this parameter.// 该参数在全局上的权值衰减的乘数optional float decay_mult = 4 [default = 1.0];
}// NOTE
// Update the next available ID when you add a new LayerParameter field.
//注意
//当你增加新的网络参数字段时,更新新的可用ID
// LayerParameter next available layer-specific ID: 143 (last added: scale_param)
// 新的可用字段号为143
message LayerParameter {optional string name = 1; // the layer nameoptional string type = 2; // the layer typerepeated string bottom = 3; // the name of each bottom blobrepeated string top = 4; // the name of each top blob// The train / test phase for computation.optional Phase phase = 10;// The amount of weight to assign each top blob in the objective.// Each layer assigns a default value, usually of either 0 or 1,// to each top blob.// 在目标中分配每个顶部blob的权重量。每个图层为每个顶部blob分配一个默认值,通常为0或1。repeated float loss_weight = 5;// Specifies training parameters (multipliers on global learning constants,// and the name and other settings used for weight sharing).// 指定训练参数(全局学习常数的乘数,以及用于权值共享的名称和其他设置)。repeated ParamSpec param = 6;// The blobs containing the numeric parameters of the layer.// blob包含层的数值参数。repeated BlobProto blobs = 7;// Specifies on which bottoms the backpropagation should be skipped.//反向传播中指定应该跳过哪些bottoms// The size must be either 0 or equal to the number of bottoms.// 大小为0或者等于bottoms的个数repeated bool propagate_down = 11;// Rules controlling whether and when a layer is included in the network,// based on the current NetState. You may specify a non-zero number of rules// to include OR exclude, but not both. If no include or exclude rules are// specified, the layer is always included. If the current NetState meets// ANY (i.e., one or more) of the specified rules, the layer is// included/excluded.// Rules 基于当前的网络状态控制该层是否包含在网络中,您可以指定非零数量的规则以包括或排除,但不能同时包含两者。// 如果未指定包含或排除规则,则始终包括该层。如果当前网络状态满足指定规则中的任意(即一个或多个),则包括/排除该层。repeated NetStateRule include = 8;repeated NetStateRule exclude = 9;// Parameters for data pre-processing.// 数据预处理的参数optional TransformationParameter transform_param = 100;// Parameters shared by loss layers.// 损耗层共享的参数。optional LossParameter loss_param = 101;// Layer type-specific parameters.// 层的各种具体类型的参数// Note: certain layers may have more than one computational engine// for their implementation. These layers include an Engine type and// engine parameter for selecting the implementation.// The default for the engine is set by the ENGINE switch at compile-time.// 注意:某些图层可能有多个计算引擎用于实现。// 这些层包括用于选择实现的引擎类型和引擎参数。// 引擎的默认值由编译时的ENGINE开关设置。optional AccuracyParameter accuracy_param = 102;//准确率optional ArgMaxParameter argmax_param = 103;//极大值optional BatchNormParameter batch_norm_param = 139;//块归一化optional BiasParameter bias_param = 141;//偏置optional ConcatParameter concat_param = 104;//连续optional ContrastiveLossParameter contrastive_loss_param = 105;//对比损失optional ConvolutionParameter convolution_param = 106;//卷积optional DataParameter data_param = 107;//数据optional DropoutParameter dropout_param = 108;//dropoutoptional DummyDataParameter dummy_data_param = 109;// 填充数据optional EltwiseParameter eltwise_param = 110;//eltwiseoptional ELUParameter elu_param = 140;//eluoptional EmbedParameter embed_param = 137;//嵌入optional ExpParameter exp_param = 111;optional FlattenParameter flatten_param = 135;optional HDF5DataParameter hdf5_data_param = 112;//hdf5 输入参数optional HDF5OutputParameter hdf5_output_param = 113;//hdf5 数据输出参数optional HingeLossParameter hinge_loss_param = 114;//合并损失optional ImageDataParameter image_data_param = 115;//图像数据optional InfogainLossParameter infogain_loss_param = 116;//信息获取?infogainoptional InnerProductParameter inner_product_param = 117;//全连接层参数optional LogParameter log_param = 134;//对数参数optional LRNParameter lrn_param = 118;//局部响应归一化参数optional MemoryDataParameter memory_data_param = 119;//内存数据参数optional MVNParameter mvn_param = 120;//mvn?optional PoolingParameter pooling_param = 121;池化参数optional PowerParameter power_param = 122;//能量参数optional PReLUParameter prelu_param = 131;//预Relu参数optional PythonParameter python_param = 130;//python参数optional ReductionParameter reduction_param = 136;//减少参数optional ReLUParameter relu_param = 123;//reluoptional ReshapeParameter reshape_param = 133;//更改形状optional ROIPoolingParameter roi_pooling_param = 8266711;//ROI池化参数optional ScaleParameter scale_param = 142;//尺度化参数optional SigmoidParameter sigmoid_param = 124;//simgmoid参数optional SmoothL1LossParameter smooth_l1_loss_param = 8266712;//平滑l1损失参数optional SoftmaxParameter softmax_param = 125;//softmax参数optional SPPParameter spp_param = 132;//SPP参数optional SliceParameter slice_param = 126;//切片参数optional TanHParameter tanh_param = 127;//反正切参数optional ThresholdParameter threshold_param = 128;//阈值参数optional TileParameter tile_param = 138;tile参数optional WindowDataParameter window_data_param = 129;//window数据参数
}// Message that stores parameters used to apply transformation
// to the data layer's data
// 存储将数据转换应用到数据层的消息结构
message TransformationParameter {// For data pre-processing, we can do simple scaling and subtracting the// data mean, if provided. Note that the mean subtraction is always carried// out before scaling.// 如果使用数据预处理,我们可以做一些简单的尺度化和对数据均值的减法。// 注意,减法操作在尺度化操作之前optional float scale = 1 [default = 1];// Specify if we want to randomly mirror data.optional bool mirror = 2 [default = false];// Specify if we would like to randomly crop an image.optional uint32 crop_size = 3 [default = 0];// mean_file and mean_value cannot be specified at the same time// 不能同时制定mean_file 和 mean_valueoptional string mean_file = 4;// if specified can be repeated once (would substract it from all the channels)// or can be repeated the same number of times as channels// (would subtract them from the corresponding channel)// 可有且仅可有一次(从所有通道中减去它)// 或者每个通道单独减去它们repeated float mean_value = 5;// Force the decoded image to have 3 color channels.// 强制解码成三通道颜色optional bool force_color = 6 [default = false];// Force the decoded image to have 1 color channels.// 强制解码成单通道颜色optional bool force_gray = 7 [default = false];
}// Message that stores parameters shared by loss layers
// 存储有损耗层共享的消息结构
message LossParameter {// If specified, ignore instances with the given label.// 如果指定,忽略给定标签的实例optional int32 ignore_label = 1;// How to normalize the loss for loss layers that aggregate across batches,// spatial dimensions, or other dimensions. Currently only implemented in// SoftmaxWithLoss layer.// 如何归一化在不同批次之间聚合的损失层的损失,空间尺寸或其他尺寸。// 目前仅实现了SoftmaxWithLoss层enum NormalizationMode {// Divide by the number of examples in the batch times spatial dimensions.// Outputs that receive the ignore label will NOT be ignored in computing// the normalization factor.// 除以例子中批次时域尺寸的数目// 接受的输出中忽略的标签将会考虑在计算归一化因子的过程中 FULL = 0;// Divide by the total number of output locations that do not take the// ignore_label. If ignore_label is not set, this behaves like FULL.// 除以未采用ignore_label的输出位置的总数。 如果未设置ignore_label,则其行为类似于FULL。 VALID = 1;// Divide by the batch size.// 除以批尺寸 BATCH_SIZE = 2;// Do not normalize the loss.// 不归一化 NONE = 3;}optional NormalizationMode normalization = 3 [default = VALID];// Deprecated. Ignored if normalization is specified. If normalization// is not specified, then setting this to false will be equivalent to// normalization = BATCH_SIZE to be consistent with previous behavior.// 已弃用。 如果指定了归一化,则忽略。 如果未指定规范化,则将其设置为false,// 将等同于规范化= BATCH_SIZE,以与以前的行为一致。optional bool normalize = 2;
}// Messages that store parameters used by individual layer types follow, in
// alphabetical order.message AccuracyParameter {// When computing accuracy, count as correct by comparing the true label to// the top k scoring classes. By default, only compare to the top scoring// class (i.e. argmax).// 当计算准确性时,通过将真实标签与前k个评分类进行比较来计算为正确。// 默认情况下,只比较顶级评分类(即argmax)。optional uint32 top_k = 1 [default = 1];// The "label" axis of the prediction blob, whose argmax corresponds to the// predicted label -- may be negative to index from the end (e.g., -1 for the// last axis). For example, if axis == 1 and the predictions are// (N x C x H x W), the label blob is expected to contain N*H*W ground truth// labels with integer values in {0, 1, ..., C-1}.// 预测blob的“标签”轴(其argmax对应于预测标签)可以从末端开始索引(例如,对于最后一个轴为-1)。// 例如,如果axis == 1并且预测是(N×C×H×W),则期望标签blob包含具有{0,1,...,N}中的整数值}。optional int32 axis = 2 [default = 1];// If specified, ignore instances with the given label.// 如果指定,忽略给定标签的实例optional int32 ignore_label = 3;
}message ArgMaxParameter {// If true produce pairs (argmax, maxval)// 如果为真,产生 (argmax, maxval)数据对,默认为假optional bool out_max_val = 1 [default = false];optional uint32 top_k = 2 [default = 1];// The axis along which to maximise -- may be negative to index from the// end (e.g., -1 for the last axis).// 沿其最大化的轴可以对从末端开始的索引为负(例如,对于最后一个轴为-1)。// By default ArgMaxLayer maximizes over the flattened trailing dimensions// for each index of the first / num dimension.// 默认情况下,ArgMaxLayer最大化第一个/num维度的每个索引的摊平尾部维度。optional int32 axis = 3;
}message ConcatParameter {// The axis along which to concatenate -- may be negative to index from the// end (e.g., -1 for the last axis). Other axes must have the// same dimension for all the bottom blobs.// By default, ConcatLayer concatenates blobs along the "channels" axis (1).// 沿着其连接的轴 - 可以从末尾开始索引(例如,对于最后一个轴为-1)。 其他轴必须有// 相同尺寸的所有底部斑点。// 默认情况下,ConcatLayer沿着“通道”轴(1)连接blob。optional int32 axis = 2 [default = 1];// DEPRECATED: alias for "axis" -- does not support negative indexing.// DEPRECATED:“axis”的别名 - 不支持负索引。optional uint32 concat_dim = 1 [default = 1];
}message BatchNormParameter {// If false, accumulate global mean/variance values via a moving average. If// true, use those accumulated values instead of computing mean/variance// across the batch.// 如果为假,则通过移动平均值累积全局均值/方差值。// 如果为真,请使用这些累计值,而不是计算整个批次的均值/方差。optional bool use_global_stats = 1;// How much does the moving average decay each iteration?//每次迭代移动平均值衰减有多少?optional float moving_average_fraction = 2 [default = .999];// Small value to add to the variance estimate so that we don't divide by// zero.// 防止除0optional float eps = 3 [default = 1e-5];
}message BiasParameter {// The first axis of bottom[0] (the first input Blob) along which to apply// bottom[1] (the second input Blob). May be negative to index from the end// (e.g., -1 for the last axis).//// 底部[0]的第一个轴(第一个输入Blob),沿着它应用底部[1](第二个输入Blob)。// 可以从末尾开始索引(例如,对于最后一个轴为-1)。// For example, if bottom[0] is 4D with shape 100x3x40x60, the output// top[0] will have the same shape, and bottom[1] may have any of the// following shapes (for the given value of axis):// 例如,如果底部[0]是具有形状100x3x40x60的4D,则为输出// 顶部[0]将具有相同的形状,底部[1]可具有任何的// 以下形状(对于给定的轴值):// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60// (axis == 1 == -3) 3; 3x40; 3x40x60// (axis == 2 == -2) 40; 40x60// (axis == 3 == -1) 60// Furthermore, bottom[1] may have the empty shape (regardless of the value of// "axis") -- a scalar bias.// 此外,底部[1]可以具有空形状(不管“轴”的值) - 标量偏差。optional int32 axis = 1 [default = 1];// (num_axes is ignored unless just one bottom is given and the bias is// a learned parameter of the layer. Otherwise, num_axes is determined by the// number of axes by the second bottom.)// (忽略num_axes,除非给定一个底部,偏差是层的学习参数,否则num_axes由第二个底部的轴数确定)。// The number of axes of the input (bottom[0]) covered by the bias// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.// Set num_axes := 0, to add a zero-axis Blob: a scalar.// 由偏置参数覆盖的输入(底部[0])的轴数,或从“轴”开始覆盖底部[0]的所有轴的-1。// 设置num_axes:= 0,以添加零轴Blob:标量。optional int32 num_axes = 2 [default = 1];// (filler is ignored unless just one bottom is given and the bias is// a learned parameter of the layer.)// The initialization for the learned bias parameter.// Default is the zero (0) initialization, resulting in the BiasLayer// initially performing the identity operation.// (填充被忽略,除非只给出一个底部,并且偏置是层的学习参数)。// 学习的偏置参数的初始化。// 默认是零(0)初始化,导致偏置层初始化执行识别操作。optional FillerParameter filler = 3;
}
message ContrastiveLossParameter {// margin for dissimilar pairoptional float margin = 1 [default = 1.0];// The first implementation of this cost did not exactly match the cost of// Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.// legacy_version = false (the default) uses (margin - d)^2 as proposed in the// Hadsell paper. New models should probably use this version.// legacy_version = true uses (margin - d^2). This is kept to support /// reproduce existing models and results// 这个成本的第一个实现并不完全匹配的成本 Hadsell等人2006 - 使用(margin-d ^ 2)而不是(margin-d)^ 2。// legacy_version = false(默认)使用(margin-d)^ 2建议的 Hadsell文中。 新模型应该可以使用这个版本。// legacy_version = true uses(margin - d ^ 2)。 这保持支持/ 重现现有模型和结果optional bool legacy_version = 2 [default = false];
}message ConvolutionParameter {optional uint32 num_output = 1; // The number of outputs for the layeroptional bool bias_term = 2 [default = true]; // whether to have bias terms:是否含有偏置// Pad, kernel size, and stride are all given as a single value for equal// dimensions in all spatial dimensions, or once per spatial dimension.// 填充,内核大小和步幅都被给定为在所有空间维度中相等维度的单个值,或者每个空间维度一次。repeated uint32 pad = 3; // The padding size; defaults to 0repeated uint32 kernel_size = 4; // The kernel sizerepeated uint32 stride = 6; // The stride; defaults to 1// Factor used to dilate the kernel, (implicitly) zero-filling the resulting// holes. (Kernel dilation is sometimes referred to by its use in the// algorithme à trous from Holschneider et al. 1987.)// 用于膨胀内核的因子,(隐含地)填充所产生的孔。//(内核膨胀有时通过其在Holschneider等人1987的算法中的使用来指代)repeated uint32 dilation = 18; // The dilation; defaults to 1// For 2D convolution only, the *_h and *_w versions may also be used to// specify both spatial dimensions.// 仅针对2D卷积,*_h and *_w version也可以用作指定的时域维度optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)optional uint32 kernel_h = 11; // The kernel height (2D only)optional uint32 kernel_w = 12; // The kernel width (2D only)optional uint32 stride_h = 13; // The stride height (2D only)optional uint32 stride_w = 14; // The stride width (2D only)optional uint32 group = 5 [default = 1]; // The group size for group convoptional FillerParameter weight_filler = 7; // The filler for the weightoptional FillerParameter bias_filler = 8; // The filler for the biasenum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 15 [default = DEFAULT];// The axis to interpret as "channels" when performing convolution.// Preceding dimensions are treated as independent inputs;// succeeding dimensions are treated as "spatial".// With (N, C, H, W) inputs, and axis == 1 (the default), we perform// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for// groups g>1) filters across the spatial axes (H, W) of the input.// With (N, C, D, H, W) inputs, and axis == 1, we perform// N independent 3D convolutions, sliding (C/g)-channels// filters across the spatial axes (D, H, W) of the input.// 执行卷积时解释为“通道”的轴。 先前维度被视为独立输入;后续维度被视为“空间”。//(N,C,H,W)输入和axis == 1(默认),我们执行N个独立的2D卷积,// 滑动C通道(或(C / g)通道,对于组g> 1)在输入的空间轴(H,W)上进行滤波。// 利用(N,C,D,H,W)输入和轴== 1,我们执行N个独立的3D卷积,在输入的空间轴(D,H,W)上滑动(C / g) 。optional int32 axis = 16 [default = 1];// Whether to force use of the general ND convolution, even if a specific// implementation for blobs of the appropriate number of spatial dimensions// is available. (Currently, there is only a 2D-specific convolution// implementation; for input blobs with num_axes != 2, this option is// ignored and the ND implementation will be used.)// 是否强制使用一般的ND卷积,即使可用具有适当数量的空间维度的blob的特定实现。// (目前,只有2D特定卷积实现;对于num_axes!= 2的输入blob,此选项被忽略,将使用ND实现)。optional bool force_nd_im2col = 17 [default = false];
}message DataParameter {enum DB { LEVELDB = 0; LMDB = 1;}// Specify the data source. //指定数据源optional string source = 1;// Specify the batch size. //指定块尺寸optional uint32 batch_size = 4;// The rand_skip variable is for the data layer to skip a few data points// to avoid all asynchronous sgd clients to start at the same point. The skip// point would be set as rand_skip * rand(0,1). Note that rand_skip should not// be larger than the number of keys in the database.// DEPRECATED. Each solver accesses a different subset of the database.// rand_skip变量用于数据层跳过几个数据点,以避免所有异步sgd客户端在同一点开始。// 跳过点将被设置为rand_skip*rand(0,1)。请注意,rand_skip不应该大于数据库中的键数。// 已过时。每个求解器访问数据库的不同子集。optional uint32 rand_skip = 7 [default = 0];optional DB backend = 8 [default = LEVELDB];// DEPRECATED. See TransformationParameter. For data pre-processing, we can do// simple scaling and subtracting the data mean, if provided. Note that the// mean subtraction is always carried out before scaling.// 过时了。参见TransformationParameter。// 如果使用数据预处理,我们可以做一些简单的尺度化和对数据均值的减法。// 注意,减法操作在尺度化操作之前optional float scale = 2 [default = 1];optional string mean_file = 3;// DEPRECATED. See TransformationParameter. Specify if we would like to randomly// crop an image.// 过时了,参见TransformationParameter。指定是否要随机裁剪图片。optional uint32 crop_size = 5 [default = 0];// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror// data.// 过时了,参见TransformationParameter。指定是否要随机镜像(拷贝)数据。optional bool mirror = 6 [default = false];// Force the encoded image to have 3 color channels// 强制将图像编码成三通道颜色,默认设置为否optional bool force_encoded_color = 9 [default = false];// Prefetch queue (Number of batches to prefetch to host memory, increase if// data access bandwidth varies).// 预取队列(要预取到主机内存的批次数,如果数据访问带宽变化则增加)。optional uint32 prefetch = 10 [default = 4];
}message DropoutParameter {optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio:衰减率,默认设置为0.5optional bool scale_train = 2 [default = true]; // scale train or test phase:尺度化训练或测试状态
}// DummyDataLayer fills any number of arbitrarily shaped blobs with random
// (or constant) data generated by "Fillers" (see "message FillerParameter").
// 假数据层用随机填充任意数量的任意形状的斑点 (或常量)由“填充器”生成的数据(见“消息填充参数”)。
message DummyDataParameter {// This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or N// shape fields, and 0, 1 or N data_fillers.// 该层产生N> = 1个顶部blob。 假数据层必须指定1或N形状字段,以及0,1或N data_fillers。// If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.// 如果数据填充器指定为0,使用值为0的常数填充器。// If 1 data_filler is specified, it is applied to all top blobs. If N are// specified, the ith is applied to the ith top blob.// 如果数据填充器指定为1,应用所有的顶层blobs。// 如果数据填充器指定为N,i应用第i的顶层blobsrepeated FillerParameter data_filler = 1;repeated BlobShape shape = 6;// 4D dimensions -- deprecated. Use "shape" instead.repeated uint32 num = 2;repeated uint32 channels = 3;repeated uint32 height = 4;repeated uint32 width = 5;
}message EltwiseParameter {enum EltwiseOp { PROD = 0; SUM = 1; MAX = 2;}optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation:元素操作repeated float coeff = 2; // blob-wise coefficient for SUM operation:用于SUM操作的blob系数// Whether to use an asymptotically slower (for >2 inputs) but stabler method// of computing the gradient for the PROD operation. (No effect for SUM op.)// 是否使用渐近较慢(用于> 2个输入),但是计算PROD操作的梯度的稳定方法。(SUM操作无效)optional bool stable_prod_grad = 3 [default = true];
}// Message that stores parameters used by ELULayer
message ELUParameter {// Described in:// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate// Deep Network Learning by Exponential Linear Units (ELUs). arXivoptional float alpha = 1 [default = 1];
}// Message that stores parameters used by EmbedLayer
// 被用作嵌入层的存储参数的消息结构
message EmbedParameter {optional uint32 num_output = 1; // The number of outputs for the layer// The input is given as integers to be interpreted as one-hot// vector indices with dimension num_input. Hence num_input should be// 1 greater than the maximum possible input value.// 输入作为整数给出,以被解释为具有num_input维的一热矢量索引。// 因此数值输入应该大于最大可能输入值的1。optional uint32 input_dim = 2;optional bool bias_term = 3 [default = true]; // Whether to use a bias termoptional FillerParameter weight_filler = 4; // The filler for the weightoptional FillerParameter bias_filler = 5; // The filler for the bias}// Message that stores parameters used by ExpLayer
// 被用作指数层的存储参数的消息结构
message ExpParameter {// ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.// Or if base is set to the default (-1), base is set to e,// so y = exp(shift + scale * x).optional float base = 1 [default = -1.0];optional float scale = 2 [default = 1.0];optional float shift = 3 [default = 0.0];
}/// Message that stores parameters used by FlattenLayer
/// 被用作打散层的存储参数的消息结构
message FlattenParameter {// The first axis to flatten: all preceding axes are retained in the output.// May be negative to index from the end (e.g., -1 for the last axis).optional int32 axis = 1 [default = 1];// 第一轴展平:所有前面的轴都保留在输出中。// 可以从末尾开始索引(例如,对于最后一个轴为-1)。// The last axis to flatten: all following axes are retained in the output.// May be negative to index from the end (e.g., the default -1 for the last// axis).optional int32 end_axis = 2 [default = -1];
}// Message that stores parameters used by HDF5DataLayer
// 被用作HDF5数据层的存储参数的消息结构
message HDF5DataParameter {// Specify the data source.optional string source = 1;// Specify the batch size.optional uint32 batch_size = 2;// Specify whether to shuffle the data.// If shuffle == true, the ordering of the HDF5 files is shuffled,// and the ordering of data within any given HDF5 file is shuffled,// but data between different files are not interleaved; all of a file's// data are output (in a random order) before moving onto another file.// 如果shuffle == true,则HDF5文件的顺序被打乱,并且任何给定HDF5文件内的数据的顺序被打乱,// 但是不同文件之间的数据不交错; 所有文件的数据在移动到另一个文件之前被输出(以随机顺序)。optional bool shuffle = 3 [default = false];
}message HDF5OutputParameter {optional string file_name = 1;
}message HingeLossParameter {enum Norm {L1 = 1;L2 = 2;}// Specify the Norm to use L1 or L2// 指定正则化为L1或者L2,默认为L1optional Norm norm = 1 [default = L1];
}message ImageDataParameter {// Specify the data source.optional string source = 1;// Specify the batch size.optional uint32 batch_size = 4 [default = 1];// The rand_skip variable is for the data layer to skip a few data points// to avoid all asynchronous sgd clients to start at the same point. The skip// point would be set as rand_skip * rand(0,1). Note that rand_skip should not// be larger than the number of keys in the database.optional uint32 rand_skip = 7 [default = 0];// Whether or not ImageLayer should shuffle the list of files at every epoch.// 是否图像层应该在每个时期打乱文件列表。默认不打乱optional bool shuffle = 8 [default = false];// It will also resize images if new_height or new_width are not zero.// 如果图像新的高度和宽度不是零,那么更改图像尺寸optional uint32 new_height = 9 [default = 0];optional uint32 new_width = 10 [default = 0];// Specify if the images are color or gray// 指定图像是彩色的还是灰度的optional bool is_color = 11 [default = true];// DEPRECATED. See TransformationParameter. For data pre-processing, we can do// simple scaling and subtracting the data mean, if provided. Note that the// mean subtraction is always carried out before scaling.optional float scale = 2 [default = 1];optional string mean_file = 3;// DEPRECATED. See TransformationParameter. Specify if we would like to randomly// crop an image.optional uint32 crop_size = 5 [default = 0];// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror// data.optional bool mirror = 6 [default = false];optional string root_folder = 12 [default = ""];
}message InfogainLossParameter {// Specify the infogain matrix source.// 指定 infogain的矩阵数据源optional string source = 1;
}message InnerProductParameter {optional uint32 num_output = 1; // The number of outputs for the layeroptional bool bias_term = 2 [default = true]; // whether to have bias termsoptional FillerParameter weight_filler = 3; // The filler for the weightoptional FillerParameter bias_filler = 4; // The filler for the bias// The first axis to be lumped into a single inner product computation;// all preceding axes are retained in the output.// 第一个轴要集中到单个内积计算中;所有前面的轴都保留在输出中。// May be negative to index from the end (e.g., -1 for the last axis).optional int32 axis = 5 [default = 1];
}// Message that stores parameters used by LogLayer
// 被用作对数层的存储参数的消息结构
message LogParameter {// LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.// Or if base is set to the default (-1), base is set to e,// so y = ln(shift + scale * x) = log_e(shift + scale * x)optional float base = 1 [default = -1.0];optional float scale = 2 [default = 1.0];optional float shift = 3 [default = 0.0];
}// Message that stores parameters used by LRNLayer
// 被用作LRN层的存储参数的消息结构
message LRNParameter {optional uint32 local_size = 1 [default = 5];optional float alpha = 2 [default = 1.];optional float beta = 3 [default = 0.75];enum NormRegion { ACROSS_CHANNELS = 0; WITHIN_CHANNEL = 1;}optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];optional float k = 5 [default = 1.];enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 6 [default = DEFAULT];
}message MemoryDataParameter {optional uint32 batch_size = 1;optional uint32 channels = 2;optional uint32 height = 3;optional uint32 width = 4;
}message MVNParameter {// This parameter can be set to false to normalize mean only// 此参数可以设置为假以仅对平均值进行标准化optional bool normalize_variance = 1 [default = true];// This parameter can be set to true to perform DNN-like MVN// 此参数可以设置为真对类似DNN的MVNoptional bool across_channels = 2 [default = false];// Epsilon for not dividing by zero while normalizing varianceoptional float eps = 3 [default = 1e-9];
}message PoolingParameter {enum PoolMethod { MAX = 0; //最大值 AVE = 1; // 平均值 STOCHASTIC = 2;// 随机}optional PoolMethod pool = 1 [default = MAX]; // The pooling method// Pad, kernel size, and stride are all given as a single value for equal// dimensions in height and width or as Y, X pairs.optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)optional uint32 pad_h = 9 [default = 0]; // The padding height:填充optional uint32 pad_w = 10 [default = 0]; // The padding widthoptional uint32 kernel_size = 2; // The kernel size (square)optional uint32 kernel_h = 5; // The kernel height:内核optional uint32 kernel_w = 6; // The kernel widthoptional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)optional uint32 stride_h = 7; // The stride height:步进optional uint32 stride_w = 8; // The stride widthenum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 11 [default = DEFAULT];// If global_pooling then it will pool over the size of the bottom by doing// kernel_h = bottom->height and kernel_w = bottom->width// 如果全局池化那么它将通过做池底部的大小// kernel_h = bottom-> height,kernel_w = bottom-> widthoptional bool global_pooling = 12 [default = false];
}message PowerParameter {// PowerLayer computes outputs y = (shift + scale * x) ^ power.optional float power = 1 [default = 1.0];optional float scale = 2 [default = 1.0];optional float shift = 3 [default = 0.0];
}message PythonParameter {optional string module = 1;optional string layer = 2;// This value is set to the attribute `param_str` of the `PythonLayer` object// in Python before calling the `setup()` method. This could be a number,// string, dictionary in Python dict format, JSON, etc. You may parse this// string in `setup` method and use it in `forward` and `backward`.// 该值设置为`PythonLayer`对象的`param_str`属性// 在Python中调用`setup()`方法。 这可能是一个数字,// 字符串,Python dict格式的字典,JSON等。你可以解析这个// 字符串在`setup`方法中,并在`forward`和`backward`中使用它。optional string param_str = 3 [default = ''];// Whether this PythonLayer is shared among worker solvers during data parallelism.// If true, each worker solver sequentially run forward from this layer.// This value should be set true if you are using it as a data layer.// 在数据并行期间,这个Python层是否在工作者解算器之间共享。// 如果为真,则每个工作解算器从该层顺序地向前运行。// 如果将其用作数据层,则此值应设置为真。optional bool share_in_parallel = 4 [default = false];
}// Message that stores parameters used by ReductionLayer
// 被用作减少层的存储参数的消息结构
message ReductionParameter {enum ReductionOp { SUM = 1; ASUM = 2; SUMSQ = 3; MEAN = 4;}optional ReductionOp operation = 1 [default = SUM]; // reduction operation// The first axis to reduce to a scalar -- may be negative to index from the// end (e.g., -1 for the last axis).// (Currently, only reduction along ALL "tail" axes is supported; reduction// of axis M through N, where N < num_axes - 1, is unsupported.)// Suppose we have an n-axis bottom Blob with shape:// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).// 减小到标量的第一轴 - 可以从端部索引为负(例如,对于最后一个轴为-1)。// (目前,仅支持沿着所有“尾”轴的缩减;轴M到N的缩减,其中N <num_axes-1不被支持)// 假设我们有一个n轴底部Blob形状:// (d0,d1,d2,...,d(m-1),dm,d(m + 1),...,d(n-1))。// If axis == m, the output Blob will have shape// (d0, d1, d2, ..., d(m-1)),// and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))// times, each including (dm * d(m+1) * ... * d(n-1)) individual data.// If axis == 0 (the default), the output Blob always has the empty shape// (count 1), performing reduction across the entire input --// often useful for creating new loss functions.// 如果axis == m,则输出Blob将具有形状(d0,d1,d2,...,d(m-1)),// 并执行reduceOp操作(d0 * d1 * d2 * ... * d(m-1))// 每个包括(dm * d(m + 1)* ... * d(n-1))个体数据。// 如果axis == 0(默认值),输出Blob总是具有空的形状// (计数1),在整个输入执行减少 - 通常用于创建新的损失函数optional int32 axis = 2 [default = 0];optional float coeff = 3 [default = 1.0]; // coefficient for output
}// Message that stores parameters used by ReLULayer
// 被用作ReLU层的存储参数的消息结构
message ReLUParameter {// Allow non-zero slope for negative inputs to speed up optimization// 对负输入允许非零斜率以加速优化,在下面这篇文章中描述// Described in:// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities// improve neural network acoustic models. In ICML Workshop on Deep Learning// for Audio, Speech, and Language Processing.optional float negative_slope = 1 [default = 0];enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 2 [default = DEFAULT];
}message ReshapeParameter {// Specify the output dimensions. If some of the dimensions are set to 0,// the corresponding dimension from the bottom layer is used (unchanged).// Exactly one dimension may be set to -1, in which case its value is// inferred from the count of the bottom blob and the remaining dimensions.// For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:// 指定输出尺寸。 如果某些维度设置为0, 使用来自底层的相应尺寸(不变)。// 正好一个维度可以设置为-1,在这种情况下,其值为// 从底部斑点的数量和剩余尺寸推断。 例如,假设我们想用形状2×8重塑二维块“输入”:// layer {// type: "Reshape" bottom: "input" top: "output"// reshape_param { ... }// }//// If "input" is 2D with shape 2 x 8, then the following reshape_param// specifications are all equivalent, producing a 3D blob "output" with shape// 2 x 2 x 4:// 如果输入2D信息为 2 x 8,那么以下reshape_param规范都是等效的,// 从而产生具有形状的3D团块“输出” 2×2×4://// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }// reshape_param { shape { dim: 0 dim: 2 dim: 4 } }// reshape_param { shape { dim: 0 dim: 2 dim: -1 } }// reshape_param { shape { dim: -1 dim: 0 dim: 2 } }//optional BlobShape shape = 1;// axis and num_axes control the portion of the bottom blob's shape that are// replaced by (included in) the reshape. By default (axis == 0 and// num_axes == -1), the entire bottom blob shape is included in the reshape,// and hence the shape field must specify the entire output shape.// axis和num_axes控制底部blob的形状的部分 替换为(包含)重塑。 默认情况下(axis == 0和// num_axes == -1),整个底部斑点形状包括在重塑中, 因此形状字段必须指定整个输出形状。// axis may be non-zero to retain some portion of the beginning of the input// shape (and may be negative to index from the end; e.g., -1 to begin the// reshape after the last axis, including nothing in the reshape,// -2 to include only the last axis, etc.).// 轴可以是非零的,以保留输入的开始的一些部分 形状(并且可以从末端索引为负;例如,-1开始// 在最后一个轴后重塑,包括没有什么在重塑, -2仅包括最后一个轴等)。//// For example, suppose "input" is a 2D blob with shape 2 x 8.// Then the following ReshapeLayer specifications are all equivalent,// producing a blob "output" with shape 2 x 2 x 4://// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }// reshape_param { shape { dim: 2 dim: 4 } axis: 1 }// reshape_param { shape { dim: 2 dim: 4 } axis: -3 }//// num_axes specifies the extent of the reshape.// If num_axes >= 0 (and axis >= 0), the reshape will be performed only on// input axes in the range [axis, axis+num_axes].// num_axes may also be -1, the default, to include all remaining axes// (starting from axis).// num_axes指定重塑的范围。 如果num_axes> = 0(且轴> = 0),则将仅执行reshape// 输入轴在[axis,axis + num_axes]范围内。 num_axes也可以是默认值-1,以包括所有其余轴 (从轴开始)。//// For example, suppose "input" is a 2D blob with shape 2 x 8.// Then the following ReshapeLayer specifications are equivalent,// producing a blob "output" with shape 1 x 2 x 8.//// reshape_param { shape { dim: 1 dim: 2 dim: 8 } }// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 }// reshape_param { shape { dim: 1 } num_axes: 0 }//// On the other hand, these would produce output blob shape 2 x 1 x 8://// reshape_param { shape { dim: 2 dim: 1 dim: 8 } }// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 }//optional int32 axis = 2 [default = 0];optional int32 num_axes = 3 [default = -1];
}// Message that stores parameters used by ROIPoolingLayer
// 被用作ROI池化层的存储参数的消息结构
message ROIPoolingParameter {// Pad, kernel size, and stride are all given as a single value for equal// dimensions in height and width or as Y, X pairs.optional uint32 pooled_h = 1 [default = 0]; // The pooled output heightoptional uint32 pooled_w = 2 [default = 0]; // The pooled output width// Multiplicative spatial scale factor to translate ROI coords from their// input scale to the scale used when pooling// 乘法空间比例因子,用于将ROI坐标从其输入量表转换为合并时使用的量表optional float spatial_scale = 3 [default = 1];
}message ScaleParameter {// The first axis of bottom[0] (the first input Blob) along which to apply// bottom[1] (the second input Blob). May be negative to index from the end// (e.g., -1 for the last axis).//// For example, if bottom[0] is 4D with shape 100x3x40x60, the output// top[0] will have the same shape, and bottom[1] may have any of the// following shapes (for the given value of axis):// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60// (axis == 1 == -3) 3; 3x40; 3x40x60// (axis == 2 == -2) 40; 40x60// (axis == 3 == -1) 60// Furthermore, bottom[1] may have the empty shape (regardless of the value of// "axis") -- a scalar multiplier.optional int32 axis = 1 [default = 1];// (num_axes is ignored unless just one bottom is given and the scale is// a learned parameter of the layer. Otherwise, num_axes is determined by the// number of axes by the second bottom.)// (忽略num_axes,除非只给出一个底部,并且比例为 该层的学习参数。 否则,num_axes由// 轴的数量由第二个底部决定。)// The number of axes of the input (bottom[0]) covered by the scale// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.// Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.// 由数轴的输入( bottom[0])的尺度参数覆盖,或-1覆盖从`axis`开始的底部[0]的所有轴。// 设置num_axes为0,乘以零轴Blob(一个标量)。optional int32 num_axes = 2 [default = 1];// (filler is ignored unless just one bottom is given and the scale is// a learned parameter of the layer.)// 仅有一个bottom的时候填充被忽略,尺度就是该层的学习参数// The initialization for the learned scale parameter.// 学习尺度参数的初始化.// Default is the unit (1) initialization, resulting in the ScaleLayer// initially performing the identity operation.// 默认单元(1)初始化,从而在尺度层初始化执行单位操作。optional FillerParameter filler = 3;// Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but// may be more efficient). Initialized with bias_filler (defaults to 0).optional bool bias_term = 4 [default = false];optional FillerParameter bias_filler = 5;
}message SigmoidParameter {enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 1 [default = DEFAULT];
}message SmoothL1LossParameter {// SmoothL1Loss(x) =// 0.5 * (sigma * x) ** 2 -- if x < 1.0 / sigma / sigma// |x| - 0.5 / sigma / sigma -- otherwiseoptional float sigma = 1 [default = 1];
}message SliceParameter {// The axis along which to slice -- may be negative to index from the end// (e.g., -1 for the last axis).// By default, SliceLayer concatenates blobs along the "channels" axis (1).optional int32 axis = 3 [default = 1];repeated uint32 slice_point = 2;// DEPRECATED: alias for "axis" -- does not support negative indexing.optional uint32 slice_dim = 1 [default = 1];
}// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
// 被用作Softmax,SoftmaxWithLoss层的存储参数的消息结构
message SoftmaxParameter {enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 1 [default = DEFAULT];// The axis along which to perform the softmax -- may be negative to index// from the end (e.g., -1 for the last axis).// 跟着softmax的主轴执行,可能是负数,如果是负数,则为逆序索引// Any other axes will be evaluated as independent softmaxes.// 其他任何轴被评为softmax的独立值optional int32 axis = 2 [default = 1];
}message TanHParameter {enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 1 [default = DEFAULT];
}// Message that stores parameters used by TileLayer
// 被用作TileLayer层的存储参数的消息结构
message TileParameter {// The index of the axis to tile.optional int32 axis = 1 [default = 1];// The number of copies (tiles) of the blob to output.optional int32 tiles = 2;
}// Message that stores parameters used by ThresholdLayer
// 被用作阈值化层的存储参数的消息结构
message ThresholdParameter {optional float threshold = 1 [default = 0]; // Strictly positive values //必须为正数
}message WindowDataParameter {// Specify the data source.//指定数据源optional string source = 1; //源名// For data pre-processing, we can do simple scaling and subtracting the// data mean, if provided. Note that the mean subtraction is always carried// out before scaling.optional float scale = 2 [default = 1];//尺度optional string mean_file = 3;//均值文件// Specify the batch size.optional uint32 batch_size = 4;//块文件// Specify if we would like to randomly crop an image.//是否指定随机剪裁图像optional uint32 crop_size = 5 [default = 0];//剪裁尺寸// Specify if we want to randomly mirror data.//是否指定随机镜像图像optional bool mirror = 6 [default = false];//默认不镜像// Foreground (object) overlap threshold //前景(对象)重叠阈值optional float fg_threshold = 7 [default = 0.5];//默认0.5// Background (non-object) overlap threshold//背景(对象)重叠阈值optional float bg_threshold = 8 [default = 0.5];//默认0.5// Fraction of batch that should be foreground objects//块的一部分可能是前景一部分optional float fg_fraction = 9 [default = 0.25];//默认值为0.25// Amount of contextual padding to add around a window// 在窗口周围上文添加量// (used only by the window_data_layer) //仅用作窗口数据层optional uint32 context_pad = 10 [default = 0];// Mode for cropping out a detection window// 剪裁检测窗口的模式// warp: cropped window is warped to a fixed size and aspect ratio// 拉伸:将窗口拉伸到固定尺寸和纵横比大小// square: the tightest square around the window is cropped// 方形:按照窗口的最小矩形选定大小optional string crop_mode = 11 [default = "warp"]; //默认为“warp” 模式// cache_images: will load all images in memory for faster access// 缓存图片:将所有图片导入到内存中用来加快访问速度optional bool cache_images = 12 [default = false];// append root_folder to locate images// 添加根目录路径以查找图片optional string root_folder = 13 [default = ""];
}message SPPParameter {enum PoolMethod { MAX = 0; AVE = 1; STOCHASTIC = 2;}optional uint32 pyramid_height = 1;optional PoolMethod pool = 2 [default = MAX]; // The pooling method //池化方法:最大值enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2;}optional Engine engine = 6 [default = DEFAULT];
}// DEPRECATED: use LayerParameter.
message V1LayerParameter {repeated string bottom = 2;repeated string top = 3;optional string name = 4;repeated NetStateRule include = 32;repeated NetStateRule exclude = 33;enum LayerType { NONE = 0; ABSVAL = 35; ACCURACY = 1; ARGMAX = 30; BNLL = 2; CONCAT = 3; CONTRASTIVE_LOSS = 37; CONVOLUTION = 4; DATA = 5; DECONVOLUTION = 39; DROPOUT = 6; DUMMY_DATA = 32; EUCLIDEAN_LOSS = 7; ELTWISE = 25; EXP = 38; FLATTEN = 8;HDF5_DATA = 9;HDF5_OUTPUT = 10; HINGE_LOSS = 28;IM2COL = 11; IMAGE_DATA = 12; INFOGAIN_LOSS = 13; INNER_PRODUCT = 14; LRN = 15; MEMORY_DATA = 29; MULTINOMIAL_LOGISTIC_LOSS = 16; MVN = 34; POOLING = 17; POWER = 26; RELU = 18; SIGMOID = 19; SIGMOID_CROSS_ENTROPY_LOSS = 27; SILENCE = 36; SOFTMAX = 20; SOFTMAX_LOSS = 21; SPLIT = 22; SLICE = 33; TANH = 23; WINDOW_DATA = 24; THRESHOLD = 31;}optional LayerType type = 5;repeated BlobProto blobs = 6;repeated string param = 1001;repeated DimCheckMode blob_share_mode = 1002;enum DimCheckMode { STRICT = 0; PERMISSIVE = 1;}repeated float blobs_lr = 7;repeated float weight_decay = 8;repeated float loss_weight = 35;optional AccuracyParameter accuracy_param = 27;optional ArgMaxParameter argmax_param = 23;optional ConcatParameter concat_param = 9;optional ContrastiveLossParameter contrastive_loss_param = 40;optional ConvolutionParameter convolution_param = 10;optional DataParameter data_param = 11;optional DropoutParameter dropout_param = 12;optional DummyDataParameter dummy_data_param = 26;optional EltwiseParameter eltwise_param = 24;optional ExpParameter exp_param = 41;optional HDF5DataParameter hdf5_data_param = 13;optional HDF5OutputParameter hdf5_output_param = 14;optional HingeLossParameter hinge_loss_param = 29;optional ImageDataParameter image_data_param = 15;optional InfogainLossParameter infogain_loss_param = 16;optional InnerProductParameter inner_product_param = 17;optional LRNParameter lrn_param = 18;optional MemoryDataParameter memory_data_param = 22;optional MVNParameter mvn_param = 34;optional PoolingParameter pooling_param = 19;optional PowerParameter power_param = 21;optional ReLUParameter relu_param = 30;optional SigmoidParameter sigmoid_param = 38;optional SoftmaxParameter softmax_param = 39;optional SliceParameter slice_param = 31;optional TanHParameter tanh_param = 37;optional ThresholdParameter threshold_param = 25;optional WindowDataParameter window_data_param = 20;optional TransformationParameter transform_param = 36;optional LossParameter loss_param = 42;optional V0LayerParameter layer = 1;
}// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters
// in Caffe. We keep this message type around for legacy support.
// 舍弃:V0LayerParameter参数是Caffe中指定层参数的旧方式。此处保留是为了向下兼容考虑。
message V0LayerParameter {optional string name = 1; // the layer nameoptional string type = 2; // the string to specify the layer type// Parameters to specify layers with inner products.// 指定层与层之间内积参数optional uint32 num_output = 3; // The number of outputs for the layeroptional bool biasterm = 4 [default = true]; // whether to have bias termsoptional FillerParameter weight_filler = 5; // The filler for the weightoptional FillerParameter bias_filler = 6; // The filler for the biasoptional uint32 pad = 7 [default = 0]; // The padding sizeoptional uint32 kernelsize = 8; // The kernel sizeoptional uint32 group = 9 [default = 1]; // The group size for group convoptional uint32 stride = 10 [default = 1]; // The strideenum PoolMethod { MAX = 0; AVE = 1; STOCHASTIC = 2;}optional PoolMethod pool = 11 [default = MAX]; // The pooling methodoptional float dropout_ratio = 12 [default = 0.5]; // dropout ratio //默认衰减因子0.5optional uint32 local_size = 13 [default = 5]; // for local response norm//默认局部尺寸5optional float alpha = 14 [default = 1.]; // for local response norm//alpha = 1optional float beta = 15 [default = 0.75]; // for local response norm//beta = 0.75optional float k = 22 [default = 1.];// k = 1// For data layers, specify the data sourceoptional string source = 16;// For data pre-processing, we can do simple scaling and subtracting the// data mean, if provided. Note that the mean subtraction is always carried// out before scaling.optional float scale = 17 [default = 1];optional string meanfile = 18;// For data layers, specify the batch size.optional uint32 batchsize = 19;// For data layers, specify if we would like to randomly crop an image.optional uint32 cropsize = 20 [default = 0];// For data layers, specify if we want to randomly mirror data.optional bool mirror = 21 [default = false];// The blobs containing the numeric parameters of the layerrepeated BlobProto blobs = 50;// The ratio that is multiplied on the global learning rate. If you want to// set the learning ratio for one blob, you need to set it for all blobs.repeated float blobs_lr = 51;// The weight decay that is multiplied on the global weight decay.repeated float weight_decay = 52;// The rand_skip variable is for the data layer to skip a few data points// to avoid all asynchronous sgd clients to start at the same point. The skip// point would be set as rand_skip * rand(0,1). Note that rand_skip should not// be larger than the number of keys in the database.// rand_skip变量用于数据层跳过几个数据点// 以避免所有异步sgd客户端在同一点启动。 跳过// 点将被设置为rand_skip * rand(0,1)。 请注意,rand_skip不应该// 大于数据库中的关键点数。optional uint32 rand_skip = 53 [default = 0];// Fields related to detection (det_*)// foreground (object) overlap threshold // 前景重叠阈值optional float det_fg_threshold = 54 [default = 0.5];// background (non-object) overlap threshold // 背景重叠阈值optional float det_bg_threshold = 55 [default = 0.5];// Fraction of batch that should be foreground objects// 图像块组的部分应该前景的概率,默认值为0.25optional float det_fg_fraction = 56 [default = 0.25];// optional bool OBSOLETE_can_clobber = 57 [default = true];// Amount of contextual padding to add around a window// 在窗口周围添加的上下填充量,仅被用作窗口数据层// (used only by the window_data_layer)optional uint32 det_context_pad = 58 [default = 0];// Mode for cropping out a detection window// warp: cropped window is warped to a fixed size and aspect ratio// square: the tightest square around the window is croppedoptional string det_crop_mode = 59 [default = "warp"];// For ReshapeLayer, one needs to specify the new dimensions.// 对于Reshape层,需要指定新维度。optional int32 new_num = 60 [default = 0];optional int32 new_channels = 61 [default = 0];optional int32 new_height = 62 [default = 0];optional int32 new_width = 63 [default = 0];// Whether or not ImageLayer should shuffle the list of files at every epoch.// It will also resize images if new_height or new_width are not zero.// 图像层是否应该在每个时期打乱文件列表// 如果新的宽度和高度不为零,那么图像将会重新指定尺寸optional bool shuffle_images = 64 [default = false];// For ConcatLayer, one needs to specify the dimension for concatenation, and// the other dimensions must be the same for all the bottom blobs.// By default it will concatenate blobs along the channels dimension.// 对于ConcatLayer,需要指定用于级联的维度// 所有底部斑点的其他尺寸必须相同。// 默认情况下,它将沿通道维度连接blob。optional uint32 concat_dim = 65 [default = 1];optional HDF5OutputParameter hdf5_output_param = 1001;
}message PReLUParameter {// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:// Surpassing Human-Level Performance on ImageNet Classification, 2015.// 参数ReLU出自于Delving Deep into Rectifiers:Surpassing Human-Level Performance// on ImageNet Classification文章// Initial value of a_i. Default is a_i=0.25 for all i.// a_i的初始值,默认为0.25optional FillerParameter filler = 1;// Whether or not slope paramters are shared across channels.// 是否跨通道共享斜率参数optional bool channel_shared = 2 [default = false];
}
这篇关于caffe 学习笔记之caffe.proto注释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!